J. Baborowski, V. Revol, C. Kottler, R. Kaufmann, P. Niedermann, F. Cardot, A. Dommann, A. Neels, M. Despont
{"title":"用于x射线相衬成像的高纵横比、大面积硅基光栅","authors":"J. Baborowski, V. Revol, C. Kottler, R. Kaufmann, P. Niedermann, F. Cardot, A. Dommann, A. Neels, M. Despont","doi":"10.1109/MEMSYS.2014.6765684","DOIUrl":null,"url":null,"abstract":"This paper reports on the latest developments in the manufacturing of high aspect ratio silicon-based gratings used for X-ray phase contrast imaging (XPCI). Grating-based XPCI provides, in one measurement, unique information about the absorption coefficient, the index of refraction and the microscopic structure of a sample at hard X-ray frequencies. For this reason, XPCI can potentially overcome the limitations of classical absorption-based radiography, notably for weakly absorbing materials. New micro-fabrication processes were developed to manufacture full set of large area and high aspect ratio X-ray gratings with few defects. The complementarity of XPCI with conventional absorption-based radiography was experimentally demonstrated.","PeriodicalId":312056,"journal":{"name":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High aspect ratio, Large area silicon-based gratings for X-ray phase contrast imaging\",\"authors\":\"J. Baborowski, V. Revol, C. Kottler, R. Kaufmann, P. Niedermann, F. Cardot, A. Dommann, A. Neels, M. Despont\",\"doi\":\"10.1109/MEMSYS.2014.6765684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the latest developments in the manufacturing of high aspect ratio silicon-based gratings used for X-ray phase contrast imaging (XPCI). Grating-based XPCI provides, in one measurement, unique information about the absorption coefficient, the index of refraction and the microscopic structure of a sample at hard X-ray frequencies. For this reason, XPCI can potentially overcome the limitations of classical absorption-based radiography, notably for weakly absorbing materials. New micro-fabrication processes were developed to manufacture full set of large area and high aspect ratio X-ray gratings with few defects. The complementarity of XPCI with conventional absorption-based radiography was experimentally demonstrated.\",\"PeriodicalId\":312056,\"journal\":{\"name\":\"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2014.6765684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2014.6765684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High aspect ratio, Large area silicon-based gratings for X-ray phase contrast imaging
This paper reports on the latest developments in the manufacturing of high aspect ratio silicon-based gratings used for X-ray phase contrast imaging (XPCI). Grating-based XPCI provides, in one measurement, unique information about the absorption coefficient, the index of refraction and the microscopic structure of a sample at hard X-ray frequencies. For this reason, XPCI can potentially overcome the limitations of classical absorption-based radiography, notably for weakly absorbing materials. New micro-fabrication processes were developed to manufacture full set of large area and high aspect ratio X-ray gratings with few defects. The complementarity of XPCI with conventional absorption-based radiography was experimentally demonstrated.