{"title":"从加速试验中预测高稳定非晶硅薄膜晶体管寿命的新方法","authors":"T. Liu, S. Wagner, J. Sturm","doi":"10.1109/IRPS.2011.5784463","DOIUrl":null,"url":null,"abstract":"We present a new method for predicting the lifetime of highly stable amorphous-silicon thin-film transistors (a-Si TFTs) from accelerated tests at elevated temperatures. The rate of DC saturation current drop can be accelerated by a factor of ∼104 when the test temperature is raised to 160°C. This ability is particularly significant for predicting the stability and lifetime of a-Si TFTs as analog drivers in active-matrix organic light emitting diode (AMOLED) displays.","PeriodicalId":242672,"journal":{"name":"2011 International Reliability Physics Symposium","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new method for predicting the lifetime of highly stable amorphous-silicon thin-film transistors from accelerated tests\",\"authors\":\"T. Liu, S. Wagner, J. Sturm\",\"doi\":\"10.1109/IRPS.2011.5784463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new method for predicting the lifetime of highly stable amorphous-silicon thin-film transistors (a-Si TFTs) from accelerated tests at elevated temperatures. The rate of DC saturation current drop can be accelerated by a factor of ∼104 when the test temperature is raised to 160°C. This ability is particularly significant for predicting the stability and lifetime of a-Si TFTs as analog drivers in active-matrix organic light emitting diode (AMOLED) displays.\",\"PeriodicalId\":242672,\"journal\":{\"name\":\"2011 International Reliability Physics Symposium\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Reliability Physics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2011.5784463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2011.5784463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new method for predicting the lifetime of highly stable amorphous-silicon thin-film transistors from accelerated tests
We present a new method for predicting the lifetime of highly stable amorphous-silicon thin-film transistors (a-Si TFTs) from accelerated tests at elevated temperatures. The rate of DC saturation current drop can be accelerated by a factor of ∼104 when the test temperature is raised to 160°C. This ability is particularly significant for predicting the stability and lifetime of a-Si TFTs as analog drivers in active-matrix organic light emitting diode (AMOLED) displays.