AlGaN阻挡层选择性区域再生制备增强模式AlN/GaN MOSHEMTs

Tongde Huang, X. Zhu, K. Lau
{"title":"AlGaN阻挡层选择性区域再生制备增强模式AlN/GaN MOSHEMTs","authors":"Tongde Huang, X. Zhu, K. Lau","doi":"10.1109/ISPSD.2013.6694480","DOIUrl":null,"url":null,"abstract":"Enhancement-mode (E-mode) metal-oxide semiconductor high electron mobility transistors (MOSHEMTs) have been fabricated by selective area regrowth technique on AlN/GaN heterostructure. A selectively regrown AlGaN barrier layer could effectively increase the 2-dimensional electron gas (2DEG) density underneath. In comparison with the conventional methods of plasma etching/treatment in the gate region, the regrowth technique can effectively avoid damage caused by the plasma process. Atomic layer deposition of Al2O3 was employed as the gate dielectric. It was found that the Al2O3 on the AlN barrier layer also could induce a higher density of 2DEG. The fabricated E-mode MOSHEMTs with a 1.4-μm gate length exhibited excellent performance of maximum drain current of 530 mA/mm and peak transconductance of 310 mS/mm. The threshold voltage of MOSHEMTs was around +0.2 V. The reverse leakage current was also observed to be around 3.6 × 10-4 mA/mm at Vgs = -1 V and Vds = 6 V. The peak channel electron mobility was extracted to be 880 cm2/Vs using split-CV method. These results indicate that the regrowth technique is a promising method to realize E-mode transistors.","PeriodicalId":175520,"journal":{"name":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Enhancement-mode AlN/GaN MOSHEMTs fabricated by selective area regrowth of AlGaN barrier layer\",\"authors\":\"Tongde Huang, X. Zhu, K. Lau\",\"doi\":\"10.1109/ISPSD.2013.6694480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancement-mode (E-mode) metal-oxide semiconductor high electron mobility transistors (MOSHEMTs) have been fabricated by selective area regrowth technique on AlN/GaN heterostructure. A selectively regrown AlGaN barrier layer could effectively increase the 2-dimensional electron gas (2DEG) density underneath. In comparison with the conventional methods of plasma etching/treatment in the gate region, the regrowth technique can effectively avoid damage caused by the plasma process. Atomic layer deposition of Al2O3 was employed as the gate dielectric. It was found that the Al2O3 on the AlN barrier layer also could induce a higher density of 2DEG. The fabricated E-mode MOSHEMTs with a 1.4-μm gate length exhibited excellent performance of maximum drain current of 530 mA/mm and peak transconductance of 310 mS/mm. The threshold voltage of MOSHEMTs was around +0.2 V. The reverse leakage current was also observed to be around 3.6 × 10-4 mA/mm at Vgs = -1 V and Vds = 6 V. The peak channel electron mobility was extracted to be 880 cm2/Vs using split-CV method. These results indicate that the regrowth technique is a promising method to realize E-mode transistors.\",\"PeriodicalId\":175520,\"journal\":{\"name\":\"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2013.6694480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2013.6694480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

采用选择性面积再生技术在AlN/GaN异质结构上制备了增强模式(E-mode)金属氧化物半导体高电子迁移率晶体管(MOSHEMTs)。选择性再生的AlGaN势垒层可以有效地提高其下的二维电子气密度。与传统的栅极区等离子体刻蚀/处理方法相比,再生技术可以有效地避免等离子体过程造成的损伤。采用Al2O3原子层沉积作为栅介质。AlN阻挡层上的Al2O3也能诱导出较高的2DEG密度。所制备的栅极长度为1.4 μm的e模MOSHEMTs具有优异的性能,最大漏极电流为530 mA/mm,峰值跨导为310 mS/mm。moshemt的阈值电压约为+0.2 V。在Vgs = -1 V和Vds = 6 V时,反向泄漏电流约为3.6 × 10-4 mA/mm。利用分裂- cv法提取通道电子迁移率峰值为880 cm2/Vs。这些结果表明,再生技术是一种很有前途的实现e模晶体管的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement-mode AlN/GaN MOSHEMTs fabricated by selective area regrowth of AlGaN barrier layer
Enhancement-mode (E-mode) metal-oxide semiconductor high electron mobility transistors (MOSHEMTs) have been fabricated by selective area regrowth technique on AlN/GaN heterostructure. A selectively regrown AlGaN barrier layer could effectively increase the 2-dimensional electron gas (2DEG) density underneath. In comparison with the conventional methods of plasma etching/treatment in the gate region, the regrowth technique can effectively avoid damage caused by the plasma process. Atomic layer deposition of Al2O3 was employed as the gate dielectric. It was found that the Al2O3 on the AlN barrier layer also could induce a higher density of 2DEG. The fabricated E-mode MOSHEMTs with a 1.4-μm gate length exhibited excellent performance of maximum drain current of 530 mA/mm and peak transconductance of 310 mS/mm. The threshold voltage of MOSHEMTs was around +0.2 V. The reverse leakage current was also observed to be around 3.6 × 10-4 mA/mm at Vgs = -1 V and Vds = 6 V. The peak channel electron mobility was extracted to be 880 cm2/Vs using split-CV method. These results indicate that the regrowth technique is a promising method to realize E-mode transistors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信