各向同性导电胶粘剂老化性能的模拟

M. Mundlein, G. Hanreich, J. Nicolics
{"title":"各向同性导电胶粘剂老化性能的模拟","authors":"M. Mundlein, G. Hanreich, J. Nicolics","doi":"10.1109/POLYTR.2002.1020185","DOIUrl":null,"url":null,"abstract":"Although, in numerous studies the changes of contact resistance during accelerated aging under elevated temperature and humidity were observed there is still a lack of understanding of degradation mechanisms. Some models illustrate connections between the contact behavior and parameters of the conductive filler. In addition to these considerations in our paper we describe the macroscopic behavior by considering the microscopic resistance change between the conductive particles themselves and between particles and contact pads. For this purpose, we calculated the electrical contact resistance with a two dimensional numeric simulation. Herein the conductive particles are modeled by randomly distributed ellipses placed between two parallel electrodes comparable to silver flakes as known from metallographic cross sections of our contact samples. The voltage and current distribution and the contact resistance as well are calculated by transforming this model into a resistor network. During a forced aging process different opposite effects occur in an adhesive joint. One effect is the increase of entire resistance due to a degradation of the interparticle contact. Another effect is the decrease of resistance caused by a post curing of the resin during aging of the adhesive joint. This behavior was experimentally determined in a previous investigation. In accordance to these effects we simulate the aging process of the joint by introducing different time dependencies of the interparticle resistance. The goal of this study is to provide a deeper understanding of the changes of the macroscopic contact behavior due to different environmental impacts.","PeriodicalId":166602,"journal":{"name":"2nd International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. POLYTRONIC 2002. Conference Proceedings (Cat. No.02EX599)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simulation of the aging behavior of isotropic conductive adhesives\",\"authors\":\"M. Mundlein, G. Hanreich, J. Nicolics\",\"doi\":\"10.1109/POLYTR.2002.1020185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although, in numerous studies the changes of contact resistance during accelerated aging under elevated temperature and humidity were observed there is still a lack of understanding of degradation mechanisms. Some models illustrate connections between the contact behavior and parameters of the conductive filler. In addition to these considerations in our paper we describe the macroscopic behavior by considering the microscopic resistance change between the conductive particles themselves and between particles and contact pads. For this purpose, we calculated the electrical contact resistance with a two dimensional numeric simulation. Herein the conductive particles are modeled by randomly distributed ellipses placed between two parallel electrodes comparable to silver flakes as known from metallographic cross sections of our contact samples. The voltage and current distribution and the contact resistance as well are calculated by transforming this model into a resistor network. During a forced aging process different opposite effects occur in an adhesive joint. One effect is the increase of entire resistance due to a degradation of the interparticle contact. Another effect is the decrease of resistance caused by a post curing of the resin during aging of the adhesive joint. This behavior was experimentally determined in a previous investigation. In accordance to these effects we simulate the aging process of the joint by introducing different time dependencies of the interparticle resistance. The goal of this study is to provide a deeper understanding of the changes of the macroscopic contact behavior due to different environmental impacts.\",\"PeriodicalId\":166602,\"journal\":{\"name\":\"2nd International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. POLYTRONIC 2002. Conference Proceedings (Cat. No.02EX599)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. POLYTRONIC 2002. Conference Proceedings (Cat. No.02EX599)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POLYTR.2002.1020185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. POLYTRONIC 2002. Conference Proceedings (Cat. No.02EX599)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POLYTR.2002.1020185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

虽然在许多研究中观察到了高温高湿加速老化过程中接触电阻的变化,但对其降解机制仍缺乏了解。一些模型说明了导电填料的接触行为与参数之间的关系。除了这些考虑外,本文还通过考虑导电颗粒本身之间以及颗粒与接触垫之间的微观电阻变化来描述宏观行为。为此,我们用二维数值模拟方法计算了接触电阻。在这里,导电颗粒是通过放置在两个平行电极之间的随机分布的椭圆来模拟的,类似于我们接触样品的金相横截面所知道的银片。将该模型转化为一个电阻网络,计算了电压、电流分布和接触电阻。在强制老化过程中,粘接接头会出现不同的相反效果。一个影响是由于颗粒间接触的退化而增加了整个电阻。另一个影响是由于粘接接头老化过程中树脂的后固化引起的阻力降低。这种行为是在先前的研究中通过实验确定的。根据这些影响,我们通过引入不同的粒间阻力的时间依赖性来模拟接头的时效过程。本研究的目的是为了更深入地了解不同环境影响下宏观接触行为的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of the aging behavior of isotropic conductive adhesives
Although, in numerous studies the changes of contact resistance during accelerated aging under elevated temperature and humidity were observed there is still a lack of understanding of degradation mechanisms. Some models illustrate connections between the contact behavior and parameters of the conductive filler. In addition to these considerations in our paper we describe the macroscopic behavior by considering the microscopic resistance change between the conductive particles themselves and between particles and contact pads. For this purpose, we calculated the electrical contact resistance with a two dimensional numeric simulation. Herein the conductive particles are modeled by randomly distributed ellipses placed between two parallel electrodes comparable to silver flakes as known from metallographic cross sections of our contact samples. The voltage and current distribution and the contact resistance as well are calculated by transforming this model into a resistor network. During a forced aging process different opposite effects occur in an adhesive joint. One effect is the increase of entire resistance due to a degradation of the interparticle contact. Another effect is the decrease of resistance caused by a post curing of the resin during aging of the adhesive joint. This behavior was experimentally determined in a previous investigation. In accordance to these effects we simulate the aging process of the joint by introducing different time dependencies of the interparticle resistance. The goal of this study is to provide a deeper understanding of the changes of the macroscopic contact behavior due to different environmental impacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信