{"title":"导电胶粘剂/锡合金界面高温降解机理研究","authors":"E. Suganuma, M. Yamashita","doi":"10.1109/ISAOM.2001.916542","DOIUrl":null,"url":null,"abstract":"The Ag-epoxy conductive adhesive/Sn-10Pb coating interface was subjected to heat exposure at 150/spl deg/C for up to 1000 hours and the interface degradation was examined by metallurgical analysis. Preferential Sn diffusion from the Sn-Pb coating layer to the Ag-epoxy conductive adhesive layer occurs due to heat exposure. In contrast, Ag does not show any significant diffusion. Large voids are formed in the Sn-Pb coating layer and a thin gap is formed at the Ag-epoxy/Sn-Pb coating layer interface. Ag/sub 3/Sn is formed in the Ag-epoxy layer. A debonding band is formed from the free surface at the Ag-epoxy/Sn-Pb coating interface. The degradation due to heat exposure is attributed to these facts. An ideal interface structure for the Ag-epoxy/Sn alloy coating that does not lose interface connection was proposed. From the electrode, a diffusion barrier layer against the electrode is followed by a Sn alloy layer that can melt at repair temperatures, and finally a barrier layer against Ag-epoxy adhesive such as Cu or Ni is applied.","PeriodicalId":321904,"journal":{"name":"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High temperature degradation mechanism of conductive adhesive/Sn alloy interface\",\"authors\":\"E. Suganuma, M. Yamashita\",\"doi\":\"10.1109/ISAOM.2001.916542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ag-epoxy conductive adhesive/Sn-10Pb coating interface was subjected to heat exposure at 150/spl deg/C for up to 1000 hours and the interface degradation was examined by metallurgical analysis. Preferential Sn diffusion from the Sn-Pb coating layer to the Ag-epoxy conductive adhesive layer occurs due to heat exposure. In contrast, Ag does not show any significant diffusion. Large voids are formed in the Sn-Pb coating layer and a thin gap is formed at the Ag-epoxy/Sn-Pb coating layer interface. Ag/sub 3/Sn is formed in the Ag-epoxy layer. A debonding band is formed from the free surface at the Ag-epoxy/Sn-Pb coating interface. The degradation due to heat exposure is attributed to these facts. An ideal interface structure for the Ag-epoxy/Sn alloy coating that does not lose interface connection was proposed. From the electrode, a diffusion barrier layer against the electrode is followed by a Sn alloy layer that can melt at repair temperatures, and finally a barrier layer against Ag-epoxy adhesive such as Cu or Ni is applied.\",\"PeriodicalId\":321904,\"journal\":{\"name\":\"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAOM.2001.916542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAOM.2001.916542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High temperature degradation mechanism of conductive adhesive/Sn alloy interface
The Ag-epoxy conductive adhesive/Sn-10Pb coating interface was subjected to heat exposure at 150/spl deg/C for up to 1000 hours and the interface degradation was examined by metallurgical analysis. Preferential Sn diffusion from the Sn-Pb coating layer to the Ag-epoxy conductive adhesive layer occurs due to heat exposure. In contrast, Ag does not show any significant diffusion. Large voids are formed in the Sn-Pb coating layer and a thin gap is formed at the Ag-epoxy/Sn-Pb coating layer interface. Ag/sub 3/Sn is formed in the Ag-epoxy layer. A debonding band is formed from the free surface at the Ag-epoxy/Sn-Pb coating interface. The degradation due to heat exposure is attributed to these facts. An ideal interface structure for the Ag-epoxy/Sn alloy coating that does not lose interface connection was proposed. From the electrode, a diffusion barrier layer against the electrode is followed by a Sn alloy layer that can melt at repair temperatures, and finally a barrier layer against Ag-epoxy adhesive such as Cu or Ni is applied.