台式EUV/软x射线源用于计量应用

K. Mann, J. Holburg, S. Lange, M. Müller, B. Schäfer
{"title":"台式EUV/软x射线源用于计量应用","authors":"K. Mann, J. Holburg, S. Lange, M. Müller, B. Schäfer","doi":"10.1117/12.2515215","DOIUrl":null,"url":null,"abstract":"Two methods improving the brilliance of laser-induced plasmas emitting in the extreme UV (EUV) and soft x-ray (SXR) region were investigated, using three different gases (nitrogen, krypton, and xenon) from a pulsed gas jet. Utilizing a newly designed piezo electric valve, up to almost ten times higher gas pressures were applied, resulting in increased target densities and thus, higher conversion efficiencies of laser energy into EUV and SXR radiation. Secondly, geometrically reducing the angle between incoming laser beam and observed plasma emission minimizes reabsorption of the emitted short wavelength radiation. Combining both methods, the source brilliance is increased by a factor of 5 for nitrogen. Furthermore, a compact EUV focusing system for metrological applications is presented utilizing the optimized plasma source. An energy density of 1 mJ/cm² at λ = 13.5 nm in the focal spot of an ellipsoidal mirror is achieved with xenon as target gas being sufficient for material removal of PMMA samples with an ablation rate of 0.05 nm/pulse.","PeriodicalId":147291,"journal":{"name":"Extreme Ultraviolet (EUV) Lithography X","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Table-top EUV/soft x-ray source for metrological applications\",\"authors\":\"K. Mann, J. Holburg, S. Lange, M. Müller, B. Schäfer\",\"doi\":\"10.1117/12.2515215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two methods improving the brilliance of laser-induced plasmas emitting in the extreme UV (EUV) and soft x-ray (SXR) region were investigated, using three different gases (nitrogen, krypton, and xenon) from a pulsed gas jet. Utilizing a newly designed piezo electric valve, up to almost ten times higher gas pressures were applied, resulting in increased target densities and thus, higher conversion efficiencies of laser energy into EUV and SXR radiation. Secondly, geometrically reducing the angle between incoming laser beam and observed plasma emission minimizes reabsorption of the emitted short wavelength radiation. Combining both methods, the source brilliance is increased by a factor of 5 for nitrogen. Furthermore, a compact EUV focusing system for metrological applications is presented utilizing the optimized plasma source. An energy density of 1 mJ/cm² at λ = 13.5 nm in the focal spot of an ellipsoidal mirror is achieved with xenon as target gas being sufficient for material removal of PMMA samples with an ablation rate of 0.05 nm/pulse.\",\"PeriodicalId\":147291,\"journal\":{\"name\":\"Extreme Ultraviolet (EUV) Lithography X\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Ultraviolet (EUV) Lithography X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2515215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Ultraviolet (EUV) Lithography X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2515215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用脉冲气体射流中的三种不同气体(氮气、氪和氙),研究了两种提高极紫外(EUV)和软x射线(SXR)区域激光诱导等离子体发光亮度的方法。利用一种新设计的压电电动阀,可以施加高达近十倍的气体压力,从而增加目标密度,从而提高激光能量转化为EUV和SXR辐射的效率。其次,几何地减小入射激光束与观测到的等离子体发射之间的夹角可以最大限度地减少发射的短波辐射的重吸收。结合这两种方法,氮的光源亮度增加了5倍。此外,利用优化后的等离子体源,提出了一种用于计量应用的紧凑的EUV聚焦系统。以氙气为靶气,在λ = 13.5 nm处,椭球镜的焦点光斑的能量密度为1 mJ/cm²,足以在0.05 nm/脉冲的烧蚀速率下去除PMMA样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Table-top EUV/soft x-ray source for metrological applications
Two methods improving the brilliance of laser-induced plasmas emitting in the extreme UV (EUV) and soft x-ray (SXR) region were investigated, using three different gases (nitrogen, krypton, and xenon) from a pulsed gas jet. Utilizing a newly designed piezo electric valve, up to almost ten times higher gas pressures were applied, resulting in increased target densities and thus, higher conversion efficiencies of laser energy into EUV and SXR radiation. Secondly, geometrically reducing the angle between incoming laser beam and observed plasma emission minimizes reabsorption of the emitted short wavelength radiation. Combining both methods, the source brilliance is increased by a factor of 5 for nitrogen. Furthermore, a compact EUV focusing system for metrological applications is presented utilizing the optimized plasma source. An energy density of 1 mJ/cm² at λ = 13.5 nm in the focal spot of an ellipsoidal mirror is achieved with xenon as target gas being sufficient for material removal of PMMA samples with an ablation rate of 0.05 nm/pulse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信