具有1/ f噪声功率谱的非线性随机微分方程的解

B. Kaulakys, J. Ruseckas
{"title":"具有1/ f噪声功率谱的非线性随机微分方程的解","authors":"B. Kaulakys, J. Ruseckas","doi":"10.1109/ICNF.2011.5994297","DOIUrl":null,"url":null,"abstract":"The special nonlinear stochastic differential equations generating power-law distributed signals and 1/ƒ noise are considered. The models involve the generalized Constant Elasticity of Variance (CEV) process, the Bessel process, the Squared Bessel process, and the Cox-Ingersoll-Ross (CIR) process, which are applied for modeling the financial markets, as well. In the paper, 1/ƒβ behavior of the power spectral density is derived directly from the nonlinear stochastic differential equations and the exact solutions for the particular CEV process are presented.","PeriodicalId":137085,"journal":{"name":"2011 21st International Conference on Noise and Fluctuations","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions of nonlinear stochastic differential equations with 1/ƒ noise power spectrum\",\"authors\":\"B. Kaulakys, J. Ruseckas\",\"doi\":\"10.1109/ICNF.2011.5994297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The special nonlinear stochastic differential equations generating power-law distributed signals and 1/ƒ noise are considered. The models involve the generalized Constant Elasticity of Variance (CEV) process, the Bessel process, the Squared Bessel process, and the Cox-Ingersoll-Ross (CIR) process, which are applied for modeling the financial markets, as well. In the paper, 1/ƒβ behavior of the power spectral density is derived directly from the nonlinear stochastic differential equations and the exact solutions for the particular CEV process are presented.\",\"PeriodicalId\":137085,\"journal\":{\"name\":\"2011 21st International Conference on Noise and Fluctuations\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 21st International Conference on Noise and Fluctuations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNF.2011.5994297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 21st International Conference on Noise and Fluctuations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNF.2011.5994297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了产生幂律分布信号和1/ f噪声的特殊非线性随机微分方程。这些模型包括广义恒定弹性方差(CEV)过程、贝塞尔过程、平方贝塞尔过程和Cox-Ingersoll-Ross (CIR)过程,这些过程也用于金融市场建模。本文从非线性随机微分方程中直接导出了功率谱密度的1/ƒβ行为,并给出了特定CEV过程的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions of nonlinear stochastic differential equations with 1/ƒ noise power spectrum
The special nonlinear stochastic differential equations generating power-law distributed signals and 1/ƒ noise are considered. The models involve the generalized Constant Elasticity of Variance (CEV) process, the Bessel process, the Squared Bessel process, and the Cox-Ingersoll-Ross (CIR) process, which are applied for modeling the financial markets, as well. In the paper, 1/ƒβ behavior of the power spectral density is derived directly from the nonlinear stochastic differential equations and the exact solutions for the particular CEV process are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信