EEPROM/flash sub 3.0 V漏源偏置热载流子写入

J. Bude, A. Frommer, M. Pinto, G. Weber
{"title":"EEPROM/flash sub 3.0 V漏源偏置热载流子写入","authors":"J. Bude, A. Frommer, M. Pinto, G. Weber","doi":"10.1109/IEDM.1995.499382","DOIUrl":null,"url":null,"abstract":"Stacked-gate memory devices have been realized which for the first time demonstrate efficient hot carrier writing for drain-source bias, V/sub DS/, down to 2.5 V. Writing is achieved by channel initiated secondary electron injection, which permits writing for qV/sub DS/ below the 3.2 eV oxide barrier. Writing times of 1 ms are achieved for floating gate voltages V/sub FG/ as low as 1.2 V, with V/sub DS/=-V/sub BS/=2.5 V, voltages which can easily be derived from a single scaled power supply, the back-gate bias generated by low-current charge pumping. No high voltage transistors are required for writing or V/sub T/ convergence. Moreover, because the devices are based on a fully scaled 0.25 /spl mu/m CMOS process, NV-memory arrays can be easily integrated with a minimum of additional process steps. Tight V/sub T/ convergence together with low voltage operation and scaling compatibility makes them ideal candidates for Giga-bit Flash.","PeriodicalId":137564,"journal":{"name":"Proceedings of International Electron Devices Meeting","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"EEPROM/flash sub 3.0 V drain-source bias hot carrier writing\",\"authors\":\"J. Bude, A. Frommer, M. Pinto, G. Weber\",\"doi\":\"10.1109/IEDM.1995.499382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stacked-gate memory devices have been realized which for the first time demonstrate efficient hot carrier writing for drain-source bias, V/sub DS/, down to 2.5 V. Writing is achieved by channel initiated secondary electron injection, which permits writing for qV/sub DS/ below the 3.2 eV oxide barrier. Writing times of 1 ms are achieved for floating gate voltages V/sub FG/ as low as 1.2 V, with V/sub DS/=-V/sub BS/=2.5 V, voltages which can easily be derived from a single scaled power supply, the back-gate bias generated by low-current charge pumping. No high voltage transistors are required for writing or V/sub T/ convergence. Moreover, because the devices are based on a fully scaled 0.25 /spl mu/m CMOS process, NV-memory arrays can be easily integrated with a minimum of additional process steps. Tight V/sub T/ convergence together with low voltage operation and scaling compatibility makes them ideal candidates for Giga-bit Flash.\",\"PeriodicalId\":137564,\"journal\":{\"name\":\"Proceedings of International Electron Devices Meeting\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.1995.499382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.1995.499382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

堆叠栅存储器件首次实现了漏源偏置(V/sub / DS/)至2.5 V时的高效热载流子写入。写入是通过通道启动的二次电子注入实现的,这允许在qV/sub DS/低于3.2 eV的氧化势垒进行写入。当浮栅电压V/sub FG/低至1.2 V, V/sub DS/=-V/sub BS/=2.5 V时,写入时间可达1ms,这些电压可以很容易地从单个标度电源中获得,由低电流电荷泵送产生的后门偏置。写入或V/sub / T/收敛不需要高压晶体管。此外,由于器件基于完全缩放的0.25 /spl mu/m CMOS工艺,nv存储器阵列可以轻松集成,只需最少的额外工艺步骤。紧密的V/sub / T/收敛以及低电压操作和缩放兼容性使它们成为千兆比特闪存的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEPROM/flash sub 3.0 V drain-source bias hot carrier writing
Stacked-gate memory devices have been realized which for the first time demonstrate efficient hot carrier writing for drain-source bias, V/sub DS/, down to 2.5 V. Writing is achieved by channel initiated secondary electron injection, which permits writing for qV/sub DS/ below the 3.2 eV oxide barrier. Writing times of 1 ms are achieved for floating gate voltages V/sub FG/ as low as 1.2 V, with V/sub DS/=-V/sub BS/=2.5 V, voltages which can easily be derived from a single scaled power supply, the back-gate bias generated by low-current charge pumping. No high voltage transistors are required for writing or V/sub T/ convergence. Moreover, because the devices are based on a fully scaled 0.25 /spl mu/m CMOS process, NV-memory arrays can be easily integrated with a minimum of additional process steps. Tight V/sub T/ convergence together with low voltage operation and scaling compatibility makes them ideal candidates for Giga-bit Flash.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信