{"title":"基于最坏情况方法的MEMS可靠性设计(DfR","authors":"S. Praveen, S. Lavu, R. Laur","doi":"10.1109/IPFA.2007.4378098","DOIUrl":null,"url":null,"abstract":"The growing applications of microsystem devices in extreme environments have a great impact on the rising importance of their reliability studies. Reliability study in MEMS lacks the availability of methods and tools to analyze them in a quick and efficient way. In this paper, we present a novel approach for reliability analysis in MEMS using worst-case methods. The method facilitates the designers to find out the critical operational parameters of the device with respect to a particular functional specification. This paper also introduces a reliability coefficient instigated from an inherent advantage of the worst-case methods.","PeriodicalId":334987,"journal":{"name":"2007 14th International Symposium on the Physical and Failure Analysis of Integrated Circuits","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design for Reliability (DfR) in MEMS using Worst-Case Methods\",\"authors\":\"S. Praveen, S. Lavu, R. Laur\",\"doi\":\"10.1109/IPFA.2007.4378098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing applications of microsystem devices in extreme environments have a great impact on the rising importance of their reliability studies. Reliability study in MEMS lacks the availability of methods and tools to analyze them in a quick and efficient way. In this paper, we present a novel approach for reliability analysis in MEMS using worst-case methods. The method facilitates the designers to find out the critical operational parameters of the device with respect to a particular functional specification. This paper also introduces a reliability coefficient instigated from an inherent advantage of the worst-case methods.\",\"PeriodicalId\":334987,\"journal\":{\"name\":\"2007 14th International Symposium on the Physical and Failure Analysis of Integrated Circuits\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 14th International Symposium on the Physical and Failure Analysis of Integrated Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2007.4378098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 14th International Symposium on the Physical and Failure Analysis of Integrated Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2007.4378098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design for Reliability (DfR) in MEMS using Worst-Case Methods
The growing applications of microsystem devices in extreme environments have a great impact on the rising importance of their reliability studies. Reliability study in MEMS lacks the availability of methods and tools to analyze them in a quick and efficient way. In this paper, we present a novel approach for reliability analysis in MEMS using worst-case methods. The method facilitates the designers to find out the critical operational parameters of the device with respect to a particular functional specification. This paper also introduces a reliability coefficient instigated from an inherent advantage of the worst-case methods.