用应力片测量模内、模后固化过程中的相关收缩率

F. Schindler-Saefkow, F. Rost, A. Rezaie-Adli, K. Jansen, B. Wunderle, J. Keller, S. Rzepka, B. Michel
{"title":"用应力片测量模内、模后固化过程中的相关收缩率","authors":"F. Schindler-Saefkow, F. Rost, A. Rezaie-Adli, K. Jansen, B. Wunderle, J. Keller, S. Rzepka, B. Michel","doi":"10.1109/EUROSIME.2014.6813807","DOIUrl":null,"url":null,"abstract":"The integration of smart systems into hybrid structures is one of the challenges addressed by the project MERGE - the cluster of excellence on Technologies for Multifunctional Lightweight Structures. As a first example, a sensor system is integrated that is able to explore the thermo-mechanical conditions these systems will typically be exposed to. After briefly describing the sensor system, the paper focuses on the results of the encapsulation step as part of the fabrication process mounting the sensor chip on the test board. The sensor system measures the mechanical stresses during and after transfer molding. In particular, the in-plane components on the chip surface were recorded with high accuracy [1, 2]. Based on these informations, material parameters have been deduced by combining experimental and simulation methods within a Design of Experiment (DoE) study. During the encapsulation process, two sets of effects induce stress into the package simultaneously. On one hand, the coefficients of thermal expansion (CTE) lead to a thermal shrinkage of the materials during cooling from the curing to room temperature. On the other hand, the volume also decreases when the epoxy mold compound (EMC) is cured from its fluid into the final solid stage. This effect is called chemical cure shrinkage [3]. Separating both effects is really a challenge. The method shown in this paper allows quantifying the corresponding material parameters by combining the stress measurements with numerical parameter identification. Based on this method, the investigation on failure modes and reliability of the integrated smart systems can be improved.","PeriodicalId":359430,"journal":{"name":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Measuring the mechanical relevant shrinkage during in-mold and post-mold cure with the stress chip\",\"authors\":\"F. Schindler-Saefkow, F. Rost, A. Rezaie-Adli, K. Jansen, B. Wunderle, J. Keller, S. Rzepka, B. Michel\",\"doi\":\"10.1109/EUROSIME.2014.6813807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of smart systems into hybrid structures is one of the challenges addressed by the project MERGE - the cluster of excellence on Technologies for Multifunctional Lightweight Structures. As a first example, a sensor system is integrated that is able to explore the thermo-mechanical conditions these systems will typically be exposed to. After briefly describing the sensor system, the paper focuses on the results of the encapsulation step as part of the fabrication process mounting the sensor chip on the test board. The sensor system measures the mechanical stresses during and after transfer molding. In particular, the in-plane components on the chip surface were recorded with high accuracy [1, 2]. Based on these informations, material parameters have been deduced by combining experimental and simulation methods within a Design of Experiment (DoE) study. During the encapsulation process, two sets of effects induce stress into the package simultaneously. On one hand, the coefficients of thermal expansion (CTE) lead to a thermal shrinkage of the materials during cooling from the curing to room temperature. On the other hand, the volume also decreases when the epoxy mold compound (EMC) is cured from its fluid into the final solid stage. This effect is called chemical cure shrinkage [3]. Separating both effects is really a challenge. The method shown in this paper allows quantifying the corresponding material parameters by combining the stress measurements with numerical parameter identification. Based on this method, the investigation on failure modes and reliability of the integrated smart systems can be improved.\",\"PeriodicalId\":359430,\"journal\":{\"name\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2014.6813807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2014.6813807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

将智能系统集成到混合结构中是MERGE项目所面临的挑战之一,MERGE是多功能轻量化结构的卓越技术集群。作为第一个例子,集成了一个传感器系统,能够探索这些系统通常面临的热机械条件。在简要描述了传感器系统之后,本文重点介绍了封装步骤的结果,作为制造过程的一部分,将传感器芯片安装在测试板上。传感器系统测量传递成型期间和之后的机械应力。特别是对芯片表面的面内元件进行了高精度的记录[1,2]。基于这些信息,在实验设计(DoE)研究中,采用实验和模拟相结合的方法推导了材料参数。在封装过程中,两组效应同时对封装产生应力。一方面,热膨胀系数(CTE)导致材料在从固化到室温冷却过程中的热收缩。另一方面,当环氧模料(EMC)从流体固化到最终固体阶段时,其体积也会减小。这种效果被称为化学固化收缩[3]。分离这两种效果确实是一个挑战。本文提出的方法可以将应力测量与数值参数识别相结合来量化相应的材料参数。基于该方法,可以提高对集成智能系统失效模式和可靠性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring the mechanical relevant shrinkage during in-mold and post-mold cure with the stress chip
The integration of smart systems into hybrid structures is one of the challenges addressed by the project MERGE - the cluster of excellence on Technologies for Multifunctional Lightweight Structures. As a first example, a sensor system is integrated that is able to explore the thermo-mechanical conditions these systems will typically be exposed to. After briefly describing the sensor system, the paper focuses on the results of the encapsulation step as part of the fabrication process mounting the sensor chip on the test board. The sensor system measures the mechanical stresses during and after transfer molding. In particular, the in-plane components on the chip surface were recorded with high accuracy [1, 2]. Based on these informations, material parameters have been deduced by combining experimental and simulation methods within a Design of Experiment (DoE) study. During the encapsulation process, two sets of effects induce stress into the package simultaneously. On one hand, the coefficients of thermal expansion (CTE) lead to a thermal shrinkage of the materials during cooling from the curing to room temperature. On the other hand, the volume also decreases when the epoxy mold compound (EMC) is cured from its fluid into the final solid stage. This effect is called chemical cure shrinkage [3]. Separating both effects is really a challenge. The method shown in this paper allows quantifying the corresponding material parameters by combining the stress measurements with numerical parameter identification. Based on this method, the investigation on failure modes and reliability of the integrated smart systems can be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信