边界遮挡条件下视觉标记的鲁棒识别*

Ruijie Chang, Yanjie Li, Chongying Wu
{"title":"边界遮挡条件下视觉标记的鲁棒识别*","authors":"Ruijie Chang, Yanjie Li, Chongying Wu","doi":"10.1109/ROBIO49542.2019.8961861","DOIUrl":null,"url":null,"abstract":"Visual markers are widely used in indoor marker-based positioning systems to achieve higher speed and accurate positioning performance. However, the classic mark identification methods have certain limitations when encountering complex conditions. Especially, if the marker’s boundary is blocked, it is almost impossible to identify the marker. In this paper, we redefine the identification task to a classification task based on CNN method. We also do some image transformations to create the dataset for our task. We train our dataset by transfer learning based on Google’s Inception-V3 CNN model. The experimental results show that the classification method can handle the boundary occlusion problem well, which is also proved to be useful for other complex conditions.","PeriodicalId":121822,"journal":{"name":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"145 35","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Identification of Visual Markers Under Boundary Occlusion Condition*\",\"authors\":\"Ruijie Chang, Yanjie Li, Chongying Wu\",\"doi\":\"10.1109/ROBIO49542.2019.8961861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual markers are widely used in indoor marker-based positioning systems to achieve higher speed and accurate positioning performance. However, the classic mark identification methods have certain limitations when encountering complex conditions. Especially, if the marker’s boundary is blocked, it is almost impossible to identify the marker. In this paper, we redefine the identification task to a classification task based on CNN method. We also do some image transformations to create the dataset for our task. We train our dataset by transfer learning based on Google’s Inception-V3 CNN model. The experimental results show that the classification method can handle the boundary occlusion problem well, which is also proved to be useful for other complex conditions.\",\"PeriodicalId\":121822,\"journal\":{\"name\":\"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"145 35\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO49542.2019.8961861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO49542.2019.8961861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

视觉标记被广泛应用于基于标记的室内定位系统,以实现更高的速度和准确的定位性能。然而,经典的标记识别方法在遇到复杂情况时存在一定的局限性。特别是,如果标记的边界被遮挡,几乎不可能识别标记。在本文中,我们将识别任务重新定义为基于CNN方法的分类任务。我们还做了一些图像转换来为我们的任务创建数据集。我们通过基于谷歌Inception-V3 CNN模型的迁移学习来训练我们的数据集。实验结果表明,该分类方法可以很好地处理边界遮挡问题,同时也适用于其他复杂条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Identification of Visual Markers Under Boundary Occlusion Condition*
Visual markers are widely used in indoor marker-based positioning systems to achieve higher speed and accurate positioning performance. However, the classic mark identification methods have certain limitations when encountering complex conditions. Especially, if the marker’s boundary is blocked, it is almost impossible to identify the marker. In this paper, we redefine the identification task to a classification task based on CNN method. We also do some image transformations to create the dataset for our task. We train our dataset by transfer learning based on Google’s Inception-V3 CNN model. The experimental results show that the classification method can handle the boundary occlusion problem well, which is also proved to be useful for other complex conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信