高效捕获生物微粒的高磁梯度装置的设计与仿真

U. Abidin, B. Majlis, J. Yunas
{"title":"高效捕获生物微粒的高磁梯度装置的设计与仿真","authors":"U. Abidin, B. Majlis, J. Yunas","doi":"10.1109/SMELEC.2012.6417122","DOIUrl":null,"url":null,"abstract":"In this work, a design and simulation of high magnetic gradient device for effective bioparticles trapping is reported. The planar square-shaped microcoil and a V-shaped nickel iron (NiFe) alloy core is designed to guide and confine the magnetic flux lines through its small tip area and thus enhance the magnetic flux density and its gradient. The effects of core structure and coil parameters are analyzed using Finite element analysis (FEA) of two dimensional axial symmetry modeling. The simulation results revealed that the V-shaped magnetic core has significantly increased the magnetic flux density, its gradient and the magnetic force affecting on the beads sample. The highest magnetic flux density value, Bnorm is 66 mT is achieved for microcoil turns of N = 20, thickness of h = 5 μm, width and spacing of w = s = 50 μm and on tip surface area of 1 μm2. Furthermore, a maximum magnetic force value of Fm = 1700 pN which is much higher than the drag force experienced by the magnetic beads in the microchannel has also been observed. Therefore, a promising effective trapping of the magnetic beads in the microfluidic channel is enable with this high magnetic gradient device design.","PeriodicalId":210558,"journal":{"name":"2012 10th IEEE International Conference on Semiconductor Electronics (ICSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design and simulation of high magnetic gradient device for effective bioparticles trapping\",\"authors\":\"U. Abidin, B. Majlis, J. Yunas\",\"doi\":\"10.1109/SMELEC.2012.6417122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a design and simulation of high magnetic gradient device for effective bioparticles trapping is reported. The planar square-shaped microcoil and a V-shaped nickel iron (NiFe) alloy core is designed to guide and confine the magnetic flux lines through its small tip area and thus enhance the magnetic flux density and its gradient. The effects of core structure and coil parameters are analyzed using Finite element analysis (FEA) of two dimensional axial symmetry modeling. The simulation results revealed that the V-shaped magnetic core has significantly increased the magnetic flux density, its gradient and the magnetic force affecting on the beads sample. The highest magnetic flux density value, Bnorm is 66 mT is achieved for microcoil turns of N = 20, thickness of h = 5 μm, width and spacing of w = s = 50 μm and on tip surface area of 1 μm2. Furthermore, a maximum magnetic force value of Fm = 1700 pN which is much higher than the drag force experienced by the magnetic beads in the microchannel has also been observed. Therefore, a promising effective trapping of the magnetic beads in the microfluidic channel is enable with this high magnetic gradient device design.\",\"PeriodicalId\":210558,\"journal\":{\"name\":\"2012 10th IEEE International Conference on Semiconductor Electronics (ICSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 10th IEEE International Conference on Semiconductor Electronics (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2012.6417122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th IEEE International Conference on Semiconductor Electronics (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2012.6417122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文报道了一种有效捕获生物微粒的高磁梯度装置的设计与仿真。设计平面方形微线圈和v型镍铁(NiFe)合金磁芯,通过微线圈的小尖端区域对磁通量线进行引导和限制,从而提高磁通量密度和梯度。采用二维轴对称建模的有限元分析方法,分析了铁芯结构和线圈参数的影响。仿真结果表明,v型磁芯显著提高了磁通密度、磁通梯度和对微珠样品的磁力影响。当微线圈匝数为N = 20,厚度为h = 5 μm,宽度和间距为w = s = 50 μm,针尖表面积为1 μm2时,磁感应强度最大值为66 mT。此外,还观察到最大磁力值Fm = 1700 pN,远高于磁珠在微通道中所受的阻力。因此,利用这种高磁梯度装置设计,可以有效地捕获微流控通道中的磁珠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and simulation of high magnetic gradient device for effective bioparticles trapping
In this work, a design and simulation of high magnetic gradient device for effective bioparticles trapping is reported. The planar square-shaped microcoil and a V-shaped nickel iron (NiFe) alloy core is designed to guide and confine the magnetic flux lines through its small tip area and thus enhance the magnetic flux density and its gradient. The effects of core structure and coil parameters are analyzed using Finite element analysis (FEA) of two dimensional axial symmetry modeling. The simulation results revealed that the V-shaped magnetic core has significantly increased the magnetic flux density, its gradient and the magnetic force affecting on the beads sample. The highest magnetic flux density value, Bnorm is 66 mT is achieved for microcoil turns of N = 20, thickness of h = 5 μm, width and spacing of w = s = 50 μm and on tip surface area of 1 μm2. Furthermore, a maximum magnetic force value of Fm = 1700 pN which is much higher than the drag force experienced by the magnetic beads in the microchannel has also been observed. Therefore, a promising effective trapping of the magnetic beads in the microfluidic channel is enable with this high magnetic gradient device design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信