快速计算封装VLSI芯片温度分布的图像方法

Virginia Martín Hériz, Je-Hyoung Park, Travis Kemper, S. Kang, Ali Shakouri
{"title":"快速计算封装VLSI芯片温度分布的图像方法","authors":"Virginia Martín Hériz, Je-Hyoung Park, Travis Kemper, S. Kang, Ali Shakouri","doi":"10.1109/THERMINIC.2007.4451740","DOIUrl":null,"url":null,"abstract":"Thermal aware routing and placement algorithms are important in industry. Currently, there are reasonably fast Green's function based algorithms that calculate the temperature distribution in a chip made from a stack of different materials. However, the layers are all assumed to have the same size, thus neglecting the important fact that the thermal mounts which are placed underneath the chip can be significantly larger than the chip itself. In an earlier publication, we showed that the image blurring technique can be used to calculate quickly temperature distribution in realistic packages. For this method to be effective, temperature distribution for several point heat sources at the center and at the corner and edges of the chip should be calculated using finite element analysis (FEA) or measured. In addition, more accurate results require correction by a weighting function that will need several FEA simulations. In this paper, we introduce the convolution by images that take the symmetry of the thermal boundary conditions into account. Thus with only \"two\" finite element simulations, the steady-state temperature distribution for an arbitrary complex power dissipation profile in a packaged chip can be calculated. Several simulation results are presented. It is shown that the power blurring technique together with the method of images can reproduce the temperature profile with an error less than 0.5%.","PeriodicalId":264943,"journal":{"name":"2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Method of images for the fast calculation of temperature distributions in packaged VLSI chips\",\"authors\":\"Virginia Martín Hériz, Je-Hyoung Park, Travis Kemper, S. Kang, Ali Shakouri\",\"doi\":\"10.1109/THERMINIC.2007.4451740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal aware routing and placement algorithms are important in industry. Currently, there are reasonably fast Green's function based algorithms that calculate the temperature distribution in a chip made from a stack of different materials. However, the layers are all assumed to have the same size, thus neglecting the important fact that the thermal mounts which are placed underneath the chip can be significantly larger than the chip itself. In an earlier publication, we showed that the image blurring technique can be used to calculate quickly temperature distribution in realistic packages. For this method to be effective, temperature distribution for several point heat sources at the center and at the corner and edges of the chip should be calculated using finite element analysis (FEA) or measured. In addition, more accurate results require correction by a weighting function that will need several FEA simulations. In this paper, we introduce the convolution by images that take the symmetry of the thermal boundary conditions into account. Thus with only \\\"two\\\" finite element simulations, the steady-state temperature distribution for an arbitrary complex power dissipation profile in a packaged chip can be calculated. Several simulation results are presented. It is shown that the power blurring technique together with the method of images can reproduce the temperature profile with an error less than 0.5%.\",\"PeriodicalId\":264943,\"journal\":{\"name\":\"2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THERMINIC.2007.4451740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2007.4451740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

热感知路由和放置算法在工业中很重要。目前,有相当快的基于格林函数的算法,可以计算由不同材料堆叠而成的芯片中的温度分布。然而,这些层都假定具有相同的尺寸,从而忽略了一个重要的事实,即放置在芯片下方的热支架可能比芯片本身大得多。在早期的出版物中,我们展示了图像模糊技术可以用于快速计算现实包装中的温度分布。为了使该方法有效,需要使用有限元分析(FEA)计算或测量芯片中心和边缘的几个点热源的温度分布。此外,更准确的结果需要通过加权函数进行校正,这将需要多次有限元模拟。在本文中,我们引入了考虑热边界条件对称性的图像卷积。因此,只需“两个”有限元模拟,就可以计算出封装芯片中任意复杂功耗曲线的稳态温度分布。给出了几个仿真结果。结果表明,功率模糊技术与图像法相结合,能以小于0.5%的误差再现温度分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method of images for the fast calculation of temperature distributions in packaged VLSI chips
Thermal aware routing and placement algorithms are important in industry. Currently, there are reasonably fast Green's function based algorithms that calculate the temperature distribution in a chip made from a stack of different materials. However, the layers are all assumed to have the same size, thus neglecting the important fact that the thermal mounts which are placed underneath the chip can be significantly larger than the chip itself. In an earlier publication, we showed that the image blurring technique can be used to calculate quickly temperature distribution in realistic packages. For this method to be effective, temperature distribution for several point heat sources at the center and at the corner and edges of the chip should be calculated using finite element analysis (FEA) or measured. In addition, more accurate results require correction by a weighting function that will need several FEA simulations. In this paper, we introduce the convolution by images that take the symmetry of the thermal boundary conditions into account. Thus with only "two" finite element simulations, the steady-state temperature distribution for an arbitrary complex power dissipation profile in a packaged chip can be calculated. Several simulation results are presented. It is shown that the power blurring technique together with the method of images can reproduce the temperature profile with an error less than 0.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信