利用多晶硅薄膜晶体管的人工神经网络

Sumio Sugisaki, Ryohei Morita, Yuki Yamaguchi, T. Matsuda, M. Kimura
{"title":"利用多晶硅薄膜晶体管的人工神经网络","authors":"Sumio Sugisaki, Ryohei Morita, Yuki Yamaguchi, T. Matsuda, M. Kimura","doi":"10.1109/IMFEDK.2016.7521689","DOIUrl":null,"url":null,"abstract":"We are developing neural networks using thin-film transistors (TFTs). By adopting an interconnect-type neural network and utilizing a characteristic degradation of poly-Si TFTs as a variable strength of synapse connection, which was originally an issue, we realized the neuron consisting of eight TFTs and synapse of only one TFT. Particularly in this presentation, we confirmed that the learning efficiency can be improved by gradually increasing the control voltage. This is a result leading to a robust and tolerant system in real situation.","PeriodicalId":293371,"journal":{"name":"2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks using poly-Si thin-film transistors\",\"authors\":\"Sumio Sugisaki, Ryohei Morita, Yuki Yamaguchi, T. Matsuda, M. Kimura\",\"doi\":\"10.1109/IMFEDK.2016.7521689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are developing neural networks using thin-film transistors (TFTs). By adopting an interconnect-type neural network and utilizing a characteristic degradation of poly-Si TFTs as a variable strength of synapse connection, which was originally an issue, we realized the neuron consisting of eight TFTs and synapse of only one TFT. Particularly in this presentation, we confirmed that the learning efficiency can be improved by gradually increasing the control voltage. This is a result leading to a robust and tolerant system in real situation.\",\"PeriodicalId\":293371,\"journal\":{\"name\":\"2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMFEDK.2016.7521689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMFEDK.2016.7521689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们正在使用薄膜晶体管(TFTs)开发神经网络。通过采用互连型神经网络,利用多晶硅TFT的特征退化作为突触连接的可变强度,这是最初的一个问题,我们实现了由八个TFT组成的神经元和只有一个TFT的突触。特别是在这个演示中,我们证实了通过逐渐增加控制电压可以提高学习效率。这使得系统在实际应用中具有鲁棒性和容忍度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural networks using poly-Si thin-film transistors
We are developing neural networks using thin-film transistors (TFTs). By adopting an interconnect-type neural network and utilizing a characteristic degradation of poly-Si TFTs as a variable strength of synapse connection, which was originally an issue, we realized the neuron consisting of eight TFTs and synapse of only one TFT. Particularly in this presentation, we confirmed that the learning efficiency can be improved by gradually increasing the control voltage. This is a result leading to a robust and tolerant system in real situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信