G. Henshall, K. Sweatman, K. Howell, U. M. de Tino, J. Miremadi, R. Parker, R. Coyle, J. Smetana, J. Nguyen, Weiping Liu, R. Pandher, D. Daily, M. Currie, Tae-Kyu Lee, J. Silk, B. Jones, S. Tisdale, F. Hua, M. Osterman, T. Sack, P. Snugovsky, A. Syed, A. Allen, J. Arnold, D. Moore, G. Chang, E. Benedetto
{"title":"iNEMI无铅合金表征项目报告:低银和无银合金的热疲劳结果","authors":"G. Henshall, K. Sweatman, K. Howell, U. M. de Tino, J. Miremadi, R. Parker, R. Coyle, J. Smetana, J. Nguyen, Weiping Liu, R. Pandher, D. Daily, M. Currie, Tae-Kyu Lee, J. Silk, B. Jones, S. Tisdale, F. Hua, M. Osterman, T. Sack, P. Snugovsky, A. Syed, A. Allen, J. Arnold, D. Moore, G. Chang, E. Benedetto","doi":"10.1109/IEMT.2012.6521821","DOIUrl":null,"url":null,"abstract":"Significant innovations in Pb-free solder alloy formulations are being driven by volume manufacturing and field experiences. As a result, the industry has seen an increase in the number of Pb-free solder alloy choices beyond the common near-eutectic Sn-Ag-Cu (SAC) alloys first established as replacements for Sn-37Pb. The increasing number of Pb-free alloys provides opportunities to address shortcomings of near-eutectic SAC, such as poor mechanical shock performance, but also introduces a variety of technical and logistical risks. Since 2008, the Pb-Free Alloy Characterization Program sponsored by the International Electronics Manufacturing Initiative (iNEMI) has been working to fill the gap in knowledge associated with thermal fatigue resistance of these new solder alloys. Results from the extensive experimental program are now becoming available and are being published through a series of publications (see References). This paper provides a summary of the overall iNEMI's program goals, the experimental structure, and the results and analysis of thermal cycling for low silver alloys, containing 1 wt.% or less Ag. Results indicated that there is a correlation between the characteristic life of short dwell thermal cycles and Ag content. Increase in the Ag content increased the characteristic life. Another important finding is that all low-and no-Ag alloys performed better than Sn-37Pb under the test conditions. Finally, as the stress levels increase during thermal cycling, the performance differences between the Pb-free alloys diminish, and their performance appears to be approaching that of Sn-37Pb.","PeriodicalId":315408,"journal":{"name":"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"iNEMI Pb-free alloy characterization project report: Thermal fatigue results for low and no-Ag alloys\",\"authors\":\"G. Henshall, K. Sweatman, K. Howell, U. M. de Tino, J. Miremadi, R. Parker, R. Coyle, J. Smetana, J. Nguyen, Weiping Liu, R. Pandher, D. Daily, M. Currie, Tae-Kyu Lee, J. Silk, B. Jones, S. Tisdale, F. Hua, M. Osterman, T. Sack, P. Snugovsky, A. Syed, A. Allen, J. Arnold, D. Moore, G. Chang, E. Benedetto\",\"doi\":\"10.1109/IEMT.2012.6521821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant innovations in Pb-free solder alloy formulations are being driven by volume manufacturing and field experiences. As a result, the industry has seen an increase in the number of Pb-free solder alloy choices beyond the common near-eutectic Sn-Ag-Cu (SAC) alloys first established as replacements for Sn-37Pb. The increasing number of Pb-free alloys provides opportunities to address shortcomings of near-eutectic SAC, such as poor mechanical shock performance, but also introduces a variety of technical and logistical risks. Since 2008, the Pb-Free Alloy Characterization Program sponsored by the International Electronics Manufacturing Initiative (iNEMI) has been working to fill the gap in knowledge associated with thermal fatigue resistance of these new solder alloys. Results from the extensive experimental program are now becoming available and are being published through a series of publications (see References). This paper provides a summary of the overall iNEMI's program goals, the experimental structure, and the results and analysis of thermal cycling for low silver alloys, containing 1 wt.% or less Ag. Results indicated that there is a correlation between the characteristic life of short dwell thermal cycles and Ag content. Increase in the Ag content increased the characteristic life. Another important finding is that all low-and no-Ag alloys performed better than Sn-37Pb under the test conditions. Finally, as the stress levels increase during thermal cycling, the performance differences between the Pb-free alloys diminish, and their performance appears to be approaching that of Sn-37Pb.\",\"PeriodicalId\":315408,\"journal\":{\"name\":\"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMT.2012.6521821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.2012.6521821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
iNEMI Pb-free alloy characterization project report: Thermal fatigue results for low and no-Ag alloys
Significant innovations in Pb-free solder alloy formulations are being driven by volume manufacturing and field experiences. As a result, the industry has seen an increase in the number of Pb-free solder alloy choices beyond the common near-eutectic Sn-Ag-Cu (SAC) alloys first established as replacements for Sn-37Pb. The increasing number of Pb-free alloys provides opportunities to address shortcomings of near-eutectic SAC, such as poor mechanical shock performance, but also introduces a variety of technical and logistical risks. Since 2008, the Pb-Free Alloy Characterization Program sponsored by the International Electronics Manufacturing Initiative (iNEMI) has been working to fill the gap in knowledge associated with thermal fatigue resistance of these new solder alloys. Results from the extensive experimental program are now becoming available and are being published through a series of publications (see References). This paper provides a summary of the overall iNEMI's program goals, the experimental structure, and the results and analysis of thermal cycling for low silver alloys, containing 1 wt.% or less Ag. Results indicated that there is a correlation between the characteristic life of short dwell thermal cycles and Ag content. Increase in the Ag content increased the characteristic life. Another important finding is that all low-and no-Ag alloys performed better than Sn-37Pb under the test conditions. Finally, as the stress levels increase during thermal cycling, the performance differences between the Pb-free alloys diminish, and their performance appears to be approaching that of Sn-37Pb.