大功率AlInGaN led热管理的理论与实验研究

A. Chernyakov, A. L. Zakgeim, K. Bulashevich, S. Karpov, V. Smirnov, V. Sergeev
{"title":"大功率AlInGaN led热管理的理论与实验研究","authors":"A. Chernyakov, A. L. Zakgeim, K. Bulashevich, S. Karpov, V. Smirnov, V. Sergeev","doi":"10.1109/EUROSIME.2014.6813819","DOIUrl":null,"url":null,"abstract":"Current spreading in a high-power flip-chip light-emitting diode (LED) and its effect on the chip thermal resistance has been studied both theoretically and experimentally. Thermal resistances of various LED units have been determined by measuring the forward voltage relaxation under pulsed current excitation of the LED at varied duty cycle. The total thermal resistance of the chip is found to rise by ~20% while the LED operating current increasing from zero to 1 A. The current density distribution in the LED active region predicted by coupled simulations of the current spreading and heat transfer agrees well with the measured near-field distribution of the light emission intensity. The observed rise in the thermal resistance is attributed to current crowding producing lateral non-uniformity in the temperature distribution inside the LED chip.","PeriodicalId":359430,"journal":{"name":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Theoretical and experimental study of thermal management in high-power AlInGaN LEDs\",\"authors\":\"A. Chernyakov, A. L. Zakgeim, K. Bulashevich, S. Karpov, V. Smirnov, V. Sergeev\",\"doi\":\"10.1109/EUROSIME.2014.6813819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current spreading in a high-power flip-chip light-emitting diode (LED) and its effect on the chip thermal resistance has been studied both theoretically and experimentally. Thermal resistances of various LED units have been determined by measuring the forward voltage relaxation under pulsed current excitation of the LED at varied duty cycle. The total thermal resistance of the chip is found to rise by ~20% while the LED operating current increasing from zero to 1 A. The current density distribution in the LED active region predicted by coupled simulations of the current spreading and heat transfer agrees well with the measured near-field distribution of the light emission intensity. The observed rise in the thermal resistance is attributed to current crowding producing lateral non-uniformity in the temperature distribution inside the LED chip.\",\"PeriodicalId\":359430,\"journal\":{\"name\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2014.6813819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2014.6813819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文从理论和实验两方面研究了大功率倒装式发光二极管(LED)中的电流扩展及其对芯片热阻的影响。通过测量脉冲电流激励下LED在不同占空比下的正向电压弛豫,确定了各种LED单元的热阻。当LED工作电流从0增加到1 A时,芯片的总热阻增加了约20%。通过对电流扩散和热传递的耦合模拟,预测了LED有源区的电流密度分布与实测的发光强度近场分布吻合较好。观察到的热阻上升是由于电流拥挤导致LED芯片内部温度分布横向不均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical and experimental study of thermal management in high-power AlInGaN LEDs
Current spreading in a high-power flip-chip light-emitting diode (LED) and its effect on the chip thermal resistance has been studied both theoretically and experimentally. Thermal resistances of various LED units have been determined by measuring the forward voltage relaxation under pulsed current excitation of the LED at varied duty cycle. The total thermal resistance of the chip is found to rise by ~20% while the LED operating current increasing from zero to 1 A. The current density distribution in the LED active region predicted by coupled simulations of the current spreading and heat transfer agrees well with the measured near-field distribution of the light emission intensity. The observed rise in the thermal resistance is attributed to current crowding producing lateral non-uniformity in the temperature distribution inside the LED chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信