R. Gaddi, C. Schepens, Charles Smith, C. Zambelli, A. Chimenton, P. Olivo
{"title":"基于mems的非易失性开关的可靠性和性能表征","authors":"R. Gaddi, C. Schepens, Charles Smith, C. Zambelli, A. Chimenton, P. Olivo","doi":"10.1109/IRPS.2011.5784472","DOIUrl":null,"url":null,"abstract":"In this paper we report data on the reliability and performance characterization of a CMOS-based non-volatile memory (NVM) array, the operating principle of which is based on stiction forces within a MEMS switch. Unlike any other NVM technology, the data retention of this technology improves with increasing temperatures. The switches have been proven to operate over an extremely wide temperature range from −150°C to 300°C, in a 4MRad/s radiation environment and can withstand acceleration forces up to 20,000g. The technology is an ideal candidate for highly reliable non-volatile memory in harsh environmental applications, like auto-motive, defense, space, down-well and geo-thermal. This NVM switch and a tunable RF-MEMS capacitor will be the first products based on this CMOS integrated MEMS platform.","PeriodicalId":242672,"journal":{"name":"2011 International Reliability Physics Symposium","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Reliability and performance characterization of a mems-based non-volatile switch\",\"authors\":\"R. Gaddi, C. Schepens, Charles Smith, C. Zambelli, A. Chimenton, P. Olivo\",\"doi\":\"10.1109/IRPS.2011.5784472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we report data on the reliability and performance characterization of a CMOS-based non-volatile memory (NVM) array, the operating principle of which is based on stiction forces within a MEMS switch. Unlike any other NVM technology, the data retention of this technology improves with increasing temperatures. The switches have been proven to operate over an extremely wide temperature range from −150°C to 300°C, in a 4MRad/s radiation environment and can withstand acceleration forces up to 20,000g. The technology is an ideal candidate for highly reliable non-volatile memory in harsh environmental applications, like auto-motive, defense, space, down-well and geo-thermal. This NVM switch and a tunable RF-MEMS capacitor will be the first products based on this CMOS integrated MEMS platform.\",\"PeriodicalId\":242672,\"journal\":{\"name\":\"2011 International Reliability Physics Symposium\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Reliability Physics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2011.5784472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2011.5784472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliability and performance characterization of a mems-based non-volatile switch
In this paper we report data on the reliability and performance characterization of a CMOS-based non-volatile memory (NVM) array, the operating principle of which is based on stiction forces within a MEMS switch. Unlike any other NVM technology, the data retention of this technology improves with increasing temperatures. The switches have been proven to operate over an extremely wide temperature range from −150°C to 300°C, in a 4MRad/s radiation environment and can withstand acceleration forces up to 20,000g. The technology is an ideal candidate for highly reliable non-volatile memory in harsh environmental applications, like auto-motive, defense, space, down-well and geo-thermal. This NVM switch and a tunable RF-MEMS capacitor will be the first products based on this CMOS integrated MEMS platform.