通过利用空间依赖性进行高效映射

Y. Rachlin, J. Dolan, P. Khosla
{"title":"通过利用空间依赖性进行高效映射","authors":"Y. Rachlin, J. Dolan, P. Khosla","doi":"10.1109/IROS.2005.1545118","DOIUrl":null,"url":null,"abstract":"Occupancy grid mapping algorithms assume that grid block values are independently distributed. However, most environments of interest contain spatial patterns that are better characterized by models that capture dependencies among grid blocks. To account for such dependencies, we model the environment as a pairwise Markov random field. We specify a belief propagation-based mapping algorithm that takes these dependencies into account when estimating a map. To demonstrate the potential benefits of this approach, we simulate a simple multi-robot minefield mapping scenario. Minefields contain spatial dependencies since some landmine configurations are more likely than others, and since clutter, which causes false alarms, can be concentrated in certain regions and completely absent in others. Our belief propagation-based approach outperforms conventional occupancy grid mapping algorithms in the sense that better maps can be obtained with significantly fewer robot measurements. The belief propagation algorithm requires a modest amount of increased computation, but we contend that in applications where significant energy and time expenditure is associated with robot movement and active sensing, the reduction in the required number of samples justified the increased computation.","PeriodicalId":189219,"journal":{"name":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Efficient mapping through exploitation of spatial dependencies\",\"authors\":\"Y. Rachlin, J. Dolan, P. Khosla\",\"doi\":\"10.1109/IROS.2005.1545118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Occupancy grid mapping algorithms assume that grid block values are independently distributed. However, most environments of interest contain spatial patterns that are better characterized by models that capture dependencies among grid blocks. To account for such dependencies, we model the environment as a pairwise Markov random field. We specify a belief propagation-based mapping algorithm that takes these dependencies into account when estimating a map. To demonstrate the potential benefits of this approach, we simulate a simple multi-robot minefield mapping scenario. Minefields contain spatial dependencies since some landmine configurations are more likely than others, and since clutter, which causes false alarms, can be concentrated in certain regions and completely absent in others. Our belief propagation-based approach outperforms conventional occupancy grid mapping algorithms in the sense that better maps can be obtained with significantly fewer robot measurements. The belief propagation algorithm requires a modest amount of increased computation, but we contend that in applications where significant energy and time expenditure is associated with robot movement and active sensing, the reduction in the required number of samples justified the increased computation.\",\"PeriodicalId\":189219,\"journal\":{\"name\":\"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2005.1545118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2005.1545118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

占用网格映射算法假设网格块值是独立分布的。然而,大多数感兴趣的环境都包含空间模式,这些模式可以通过捕获网格块之间的依赖关系的模型来更好地表征。为了解释这种依赖关系,我们将环境建模为成对马尔可夫随机场。我们指定了一种基于信念传播的映射算法,该算法在估计映射时考虑了这些依赖关系。为了演示这种方法的潜在好处,我们模拟了一个简单的多机器人雷区测绘场景。雷区具有空间依赖性,因为某些地雷的配置比其他地雷更有可能出现,而且造成误报的杂波可能集中在某些区域,而在其他区域则完全没有。我们基于信念传播的方法优于传统的占用网格地图算法,因为可以用更少的机器人测量获得更好的地图。信念传播算法需要适度增加的计算量,但我们认为,在与机器人运动和主动感知相关的大量能量和时间支出的应用中,所需样本数量的减少证明了增加的计算量是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient mapping through exploitation of spatial dependencies
Occupancy grid mapping algorithms assume that grid block values are independently distributed. However, most environments of interest contain spatial patterns that are better characterized by models that capture dependencies among grid blocks. To account for such dependencies, we model the environment as a pairwise Markov random field. We specify a belief propagation-based mapping algorithm that takes these dependencies into account when estimating a map. To demonstrate the potential benefits of this approach, we simulate a simple multi-robot minefield mapping scenario. Minefields contain spatial dependencies since some landmine configurations are more likely than others, and since clutter, which causes false alarms, can be concentrated in certain regions and completely absent in others. Our belief propagation-based approach outperforms conventional occupancy grid mapping algorithms in the sense that better maps can be obtained with significantly fewer robot measurements. The belief propagation algorithm requires a modest amount of increased computation, but we contend that in applications where significant energy and time expenditure is associated with robot movement and active sensing, the reduction in the required number of samples justified the increased computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信