{"title":"介观系统中全计数统计量的波希曼公式","authors":"G. Albareda, Fabio L. Traversa, X. Oriols","doi":"10.1109/ICNF.2011.5994313","DOIUrl":null,"url":null,"abstract":"Predicting time-dependent current correlations in mesoscopic systems represents a challenge to theorists because it requires the ability to reproduce sequential measurements, i.e. unitary (Schrödinger-like) and non-unitary (collapse-like) evolutions of the quantum systems. On the contrary, Bohmian formulation of quantum theory, in terms of quantum trajectories guided by waves, by construction, exactly reproduces all quantum phenomena (even correlations) without needing to invoke the role of the operators in the system's measurement. Here, by simply highlighting the operatorless character of Bohmian mechanics, we show that the conceptual difficulties associated to sequential measurements, when electron transport is formulated within the orthodox quantum mechanics, can be substituted by a practical difficulty in the reduction of the degrees of freedom associated to open mesoscopic systems, when the problem is formulated within Bohmian mechanics.","PeriodicalId":137085,"journal":{"name":"2011 21st International Conference on Noise and Fluctuations","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bohmian formulation of Full Counting Statistics in mesoscopic systems\",\"authors\":\"G. Albareda, Fabio L. Traversa, X. Oriols\",\"doi\":\"10.1109/ICNF.2011.5994313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting time-dependent current correlations in mesoscopic systems represents a challenge to theorists because it requires the ability to reproduce sequential measurements, i.e. unitary (Schrödinger-like) and non-unitary (collapse-like) evolutions of the quantum systems. On the contrary, Bohmian formulation of quantum theory, in terms of quantum trajectories guided by waves, by construction, exactly reproduces all quantum phenomena (even correlations) without needing to invoke the role of the operators in the system's measurement. Here, by simply highlighting the operatorless character of Bohmian mechanics, we show that the conceptual difficulties associated to sequential measurements, when electron transport is formulated within the orthodox quantum mechanics, can be substituted by a practical difficulty in the reduction of the degrees of freedom associated to open mesoscopic systems, when the problem is formulated within Bohmian mechanics.\",\"PeriodicalId\":137085,\"journal\":{\"name\":\"2011 21st International Conference on Noise and Fluctuations\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 21st International Conference on Noise and Fluctuations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNF.2011.5994313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 21st International Conference on Noise and Fluctuations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNF.2011.5994313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bohmian formulation of Full Counting Statistics in mesoscopic systems
Predicting time-dependent current correlations in mesoscopic systems represents a challenge to theorists because it requires the ability to reproduce sequential measurements, i.e. unitary (Schrödinger-like) and non-unitary (collapse-like) evolutions of the quantum systems. On the contrary, Bohmian formulation of quantum theory, in terms of quantum trajectories guided by waves, by construction, exactly reproduces all quantum phenomena (even correlations) without needing to invoke the role of the operators in the system's measurement. Here, by simply highlighting the operatorless character of Bohmian mechanics, we show that the conceptual difficulties associated to sequential measurements, when electron transport is formulated within the orthodox quantum mechanics, can be substituted by a practical difficulty in the reduction of the degrees of freedom associated to open mesoscopic systems, when the problem is formulated within Bohmian mechanics.