核局部fisher判别分析在化工过程故障诊断中的应用

Wang Jian, Han Zhiyan, Feng Jian
{"title":"核局部fisher判别分析在化工过程故障诊断中的应用","authors":"Wang Jian, Han Zhiyan, Feng Jian","doi":"10.1109/SOLI.2013.6611486","DOIUrl":null,"url":null,"abstract":"Though Fisher discriminant analysis (FDA) is an outstanding method for fault diagnosis, it is difficult to extract the discriminant information in complex industrial environment. One of the reasons is that FDA can not remain the geometric structure information of the sample space truly due to non-Gaussian and nonlinear structures characteristics of data in industrial process. In this paper, kernel local fisher discriminant analysis (KLFDA) is proposed to solve the problem. The proposed approach is applied to Tennessee Eastman process (TEP). The results demonstrate that KLFDA shows better fault diagnosis performance than conventional FDA.","PeriodicalId":147180,"journal":{"name":"Proceedings of 2013 IEEE International Conference on Service Operations and Logistics, and Informatics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kernel local fisher discriminant analysis for fault diagnosis in chemical process\",\"authors\":\"Wang Jian, Han Zhiyan, Feng Jian\",\"doi\":\"10.1109/SOLI.2013.6611486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though Fisher discriminant analysis (FDA) is an outstanding method for fault diagnosis, it is difficult to extract the discriminant information in complex industrial environment. One of the reasons is that FDA can not remain the geometric structure information of the sample space truly due to non-Gaussian and nonlinear structures characteristics of data in industrial process. In this paper, kernel local fisher discriminant analysis (KLFDA) is proposed to solve the problem. The proposed approach is applied to Tennessee Eastman process (TEP). The results demonstrate that KLFDA shows better fault diagnosis performance than conventional FDA.\",\"PeriodicalId\":147180,\"journal\":{\"name\":\"Proceedings of 2013 IEEE International Conference on Service Operations and Logistics, and Informatics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2013 IEEE International Conference on Service Operations and Logistics, and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOLI.2013.6611486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 IEEE International Conference on Service Operations and Logistics, and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2013.6611486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Fisher判别分析(FDA)是一种杰出的故障诊断方法,但在复杂的工业环境中难以提取出判别信息。其中一个原因是由于工业过程中数据的非高斯和非线性结构特征,使得FDA不能真实地保留样本空间的几何结构信息。本文提出了核局部fisher判别分析(KLFDA)来解决这一问题。将该方法应用于田纳西伊士曼过程(TEP)。结果表明,KLFDA比传统FDA具有更好的故障诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel local fisher discriminant analysis for fault diagnosis in chemical process
Though Fisher discriminant analysis (FDA) is an outstanding method for fault diagnosis, it is difficult to extract the discriminant information in complex industrial environment. One of the reasons is that FDA can not remain the geometric structure information of the sample space truly due to non-Gaussian and nonlinear structures characteristics of data in industrial process. In this paper, kernel local fisher discriminant analysis (KLFDA) is proposed to solve the problem. The proposed approach is applied to Tennessee Eastman process (TEP). The results demonstrate that KLFDA shows better fault diagnosis performance than conventional FDA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信