无铅表面贴装焊点在电源循环过程中的热机械损伤积累

P. Hegde, D. Whalley, V. Silberschmidt
{"title":"无铅表面贴装焊点在电源循环过程中的热机械损伤积累","authors":"P. Hegde, D. Whalley, V. Silberschmidt","doi":"10.1109/ESTC.2008.4684502","DOIUrl":null,"url":null,"abstract":"It is well known that in surface mount technology (SMT), thermal strains in electronic assemblies are induced in the solder joints by the mismatch between the coefficients of thermal expansion (CTE) of the components, substrate and solder, both during their processing and in service. Therefore, thermo-mechanical damage is likely to occur in the solder and the principle reliability hazard in SMT assemblies is the resulting fatigue cracking of the solder fillet, caused by cyclic thermal stresses. These stresses may be caused by both cyclic variations in power dissipation within equipment and by external environmental temperature changes. Most work reported to date has focused on the effects of environmental temperature changes, although for many types of equipment power cycling may result in significant stresses. The present paper describes the experimental determination of the actual temperature distribution in a chip resistor assembly when it is powered. The paper also discusses the significance of such experimentally determined non-uniform temperature distributions in electronic assemblies to fatigue damage accumulation due to both power cycling and to cyclic variations in the ambient temperature whilst the chip resistor is powered. This fatigue damage accumulation study is carried out using finite element analysis.","PeriodicalId":146584,"journal":{"name":"2008 2nd Electronics System-Integration Technology Conference","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermo-mechanical damage accumulation during power cycling of lead-free surface mount solder joints\",\"authors\":\"P. Hegde, D. Whalley, V. Silberschmidt\",\"doi\":\"10.1109/ESTC.2008.4684502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that in surface mount technology (SMT), thermal strains in electronic assemblies are induced in the solder joints by the mismatch between the coefficients of thermal expansion (CTE) of the components, substrate and solder, both during their processing and in service. Therefore, thermo-mechanical damage is likely to occur in the solder and the principle reliability hazard in SMT assemblies is the resulting fatigue cracking of the solder fillet, caused by cyclic thermal stresses. These stresses may be caused by both cyclic variations in power dissipation within equipment and by external environmental temperature changes. Most work reported to date has focused on the effects of environmental temperature changes, although for many types of equipment power cycling may result in significant stresses. The present paper describes the experimental determination of the actual temperature distribution in a chip resistor assembly when it is powered. The paper also discusses the significance of such experimentally determined non-uniform temperature distributions in electronic assemblies to fatigue damage accumulation due to both power cycling and to cyclic variations in the ambient temperature whilst the chip resistor is powered. This fatigue damage accumulation study is carried out using finite element analysis.\",\"PeriodicalId\":146584,\"journal\":{\"name\":\"2008 2nd Electronics System-Integration Technology Conference\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 2nd Electronics System-Integration Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTC.2008.4684502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 2nd Electronics System-Integration Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2008.4684502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

众所周知,在表面贴装技术(SMT)中,电子组件的热膨胀系数(CTE)在其加工和使用过程中都是不匹配的,从而在焊点处引起热应变。因此,焊料很可能发生热机械损伤,而SMT组件的主要可靠性危害是由循环热应力引起的焊料角的疲劳开裂。这些应力可能由设备内部功率耗散的周期性变化和外部环境温度变化引起。尽管对于许多类型的设备,功率循环可能会导致显著的应力,但迄今为止报道的大多数工作都集中在环境温度变化的影响上。本文描述了用实验方法测定贴片电阻器组件通电时的实际温度分布。本文还讨论了这种实验确定的电子组件中的非均匀温度分布对由于电源循环和芯片电阻供电时环境温度的循环变化而引起的疲劳损伤积累的意义。采用有限元方法进行了疲劳损伤累积研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermo-mechanical damage accumulation during power cycling of lead-free surface mount solder joints
It is well known that in surface mount technology (SMT), thermal strains in electronic assemblies are induced in the solder joints by the mismatch between the coefficients of thermal expansion (CTE) of the components, substrate and solder, both during their processing and in service. Therefore, thermo-mechanical damage is likely to occur in the solder and the principle reliability hazard in SMT assemblies is the resulting fatigue cracking of the solder fillet, caused by cyclic thermal stresses. These stresses may be caused by both cyclic variations in power dissipation within equipment and by external environmental temperature changes. Most work reported to date has focused on the effects of environmental temperature changes, although for many types of equipment power cycling may result in significant stresses. The present paper describes the experimental determination of the actual temperature distribution in a chip resistor assembly when it is powered. The paper also discusses the significance of such experimentally determined non-uniform temperature distributions in electronic assemblies to fatigue damage accumulation due to both power cycling and to cyclic variations in the ambient temperature whilst the chip resistor is powered. This fatigue damage accumulation study is carried out using finite element analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信