基于广义解耦多项式混沌的统计分析

Xiaochen Liu, E. Gad
{"title":"基于广义解耦多项式混沌的统计分析","authors":"Xiaochen Liu, E. Gad","doi":"10.1109/EPEPS.2015.7347120","DOIUrl":null,"url":null,"abstract":"This paper describes a new approach to the statistical characterization of high-speed interconnect circuits. The proposed approach is based on the idea of polynomial chaos and works by decoupling the matrices that arise from the Galerkin projection. The new approach is general in the sense that it can handle any polynomial system used in the generalized polynomial chaos(gPC) framework.","PeriodicalId":130864,"journal":{"name":"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Statistical analysis via generalized decoupled polynomial chaos\",\"authors\":\"Xiaochen Liu, E. Gad\",\"doi\":\"10.1109/EPEPS.2015.7347120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new approach to the statistical characterization of high-speed interconnect circuits. The proposed approach is based on the idea of polynomial chaos and works by decoupling the matrices that arise from the Galerkin projection. The new approach is general in the sense that it can handle any polynomial system used in the generalized polynomial chaos(gPC) framework.\",\"PeriodicalId\":130864,\"journal\":{\"name\":\"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2015.7347120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2015.7347120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种高速互连电路统计表征的新方法。提出的方法基于多项式混沌的思想,并通过解耦由伽辽金投影产生的矩阵来工作。该方法的通用性在于它可以处理广义多项式混沌(gPC)框架中使用的任何多项式系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical analysis via generalized decoupled polynomial chaos
This paper describes a new approach to the statistical characterization of high-speed interconnect circuits. The proposed approach is based on the idea of polynomial chaos and works by decoupling the matrices that arise from the Galerkin projection. The new approach is general in the sense that it can handle any polynomial system used in the generalized polynomial chaos(gPC) framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信