Kenta Miyawaki, R. Yamashita, Taishi Kodama, O. Maida
{"title":"掺硼金刚石(100)薄膜深度缺陷高灵敏度瞬态光电容测量系统的研制","authors":"Kenta Miyawaki, R. Yamashita, Taishi Kodama, O. Maida","doi":"10.1109/IMFEDK.2018.8581973","DOIUrl":null,"url":null,"abstract":"We have developed a highly-sensitive transient photocapacitance measurement system for deep defects in wide bandgap materials, and applied it to characterize the boron-doped diamond films grown on a high-pressure/high-temperature-synthesized Ib diamond substrate using high-power-density microwave-plasma chemical vapor deposition method. The developed transient photocapacitance measurement system has both a low detection limit of less than 0.5 fF for changes in the photocapacitance and a low measurement temperature drift of less than 0.03 K in 12 h. By using the transient photocapacitance measurement system, we have successfully found an acceptor-type defect around 1.2 eV above the valence band maximum for the B-doped diamond film.","PeriodicalId":434417,"journal":{"name":"2018 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Highly-Sensitive Transient Photocapacitance Mesurement System for Deep Defects in Boron-Doped Diamond (100) Films\",\"authors\":\"Kenta Miyawaki, R. Yamashita, Taishi Kodama, O. Maida\",\"doi\":\"10.1109/IMFEDK.2018.8581973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a highly-sensitive transient photocapacitance measurement system for deep defects in wide bandgap materials, and applied it to characterize the boron-doped diamond films grown on a high-pressure/high-temperature-synthesized Ib diamond substrate using high-power-density microwave-plasma chemical vapor deposition method. The developed transient photocapacitance measurement system has both a low detection limit of less than 0.5 fF for changes in the photocapacitance and a low measurement temperature drift of less than 0.03 K in 12 h. By using the transient photocapacitance measurement system, we have successfully found an acceptor-type defect around 1.2 eV above the valence band maximum for the B-doped diamond film.\",\"PeriodicalId\":434417,\"journal\":{\"name\":\"2018 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMFEDK.2018.8581973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMFEDK.2018.8581973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Highly-Sensitive Transient Photocapacitance Mesurement System for Deep Defects in Boron-Doped Diamond (100) Films
We have developed a highly-sensitive transient photocapacitance measurement system for deep defects in wide bandgap materials, and applied it to characterize the boron-doped diamond films grown on a high-pressure/high-temperature-synthesized Ib diamond substrate using high-power-density microwave-plasma chemical vapor deposition method. The developed transient photocapacitance measurement system has both a low detection limit of less than 0.5 fF for changes in the photocapacitance and a low measurement temperature drift of less than 0.03 K in 12 h. By using the transient photocapacitance measurement system, we have successfully found an acceptor-type defect around 1.2 eV above the valence band maximum for the B-doped diamond film.