Zhe-Yang Huang, Che-Cheng Huang, Chun-Chieh Chen, C. Hung, C. Jou
{"title":"用于组1 ~ 3mb - ofdm超宽带无线接收机的带分流峰值负载的CMOS低噪声放大器","authors":"Zhe-Yang Huang, Che-Cheng Huang, Chun-Chieh Chen, C. Hung, C. Jou","doi":"10.1109/VDAT.2008.4542460","DOIUrl":null,"url":null,"abstract":"In this paper, a CMOS low-noise amplifier (LNA) is designed for ultra-wideband (UWB) wireless receiver system. The design consists of a wideband input impedance matching network, two stage cascode amplifiers with shunt-peaking load and an output buffer for measurement purpose. It was fabricated in UMC 0.18 mum standard RF CMOS process. The LNA provides 14.1 dB maximum power gain between 2.3G Hz-8.0 GH while consuming 18.6 mW (including buffer) through a 1.8 V supply. Over the 3.1 GHz-8.0 GHz frequency band, a minimum noise figure is 2.0 dB. The input return loss is lower than -7.1 dB in the entire bandwidth has also been achieved.","PeriodicalId":156790,"journal":{"name":"2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT)","volume":"49 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CMOS low-noise amplifier with shunt-peaking load for group 1∼3 MB-OFDM ultra-wideband wireless receiver\",\"authors\":\"Zhe-Yang Huang, Che-Cheng Huang, Chun-Chieh Chen, C. Hung, C. Jou\",\"doi\":\"10.1109/VDAT.2008.4542460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a CMOS low-noise amplifier (LNA) is designed for ultra-wideband (UWB) wireless receiver system. The design consists of a wideband input impedance matching network, two stage cascode amplifiers with shunt-peaking load and an output buffer for measurement purpose. It was fabricated in UMC 0.18 mum standard RF CMOS process. The LNA provides 14.1 dB maximum power gain between 2.3G Hz-8.0 GH while consuming 18.6 mW (including buffer) through a 1.8 V supply. Over the 3.1 GHz-8.0 GHz frequency band, a minimum noise figure is 2.0 dB. The input return loss is lower than -7.1 dB in the entire bandwidth has also been achieved.\",\"PeriodicalId\":156790,\"journal\":{\"name\":\"2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT)\",\"volume\":\"49 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VDAT.2008.4542460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VDAT.2008.4542460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CMOS low-noise amplifier with shunt-peaking load for group 1∼3 MB-OFDM ultra-wideband wireless receiver
In this paper, a CMOS low-noise amplifier (LNA) is designed for ultra-wideband (UWB) wireless receiver system. The design consists of a wideband input impedance matching network, two stage cascode amplifiers with shunt-peaking load and an output buffer for measurement purpose. It was fabricated in UMC 0.18 mum standard RF CMOS process. The LNA provides 14.1 dB maximum power gain between 2.3G Hz-8.0 GH while consuming 18.6 mW (including buffer) through a 1.8 V supply. Over the 3.1 GHz-8.0 GHz frequency band, a minimum noise figure is 2.0 dB. The input return loss is lower than -7.1 dB in the entire bandwidth has also been achieved.