热润滑脂加速泵出试验

B. Wunderle, D. May, J. Heilmann, J. Arnold, J. Hirscheider, Y. Li, J. Bauer, R. Schacht, M. A. Ras
{"title":"热润滑脂加速泵出试验","authors":"B. Wunderle, D. May, J. Heilmann, J. Arnold, J. Hirscheider, Y. Li, J. Bauer, R. Schacht, M. A. Ras","doi":"10.1109/EUROSIME.2019.8724540","DOIUrl":null,"url":null,"abstract":"Thermal greases allow a low stress bond at low bond line thicknesses (BLT) at medium thermal conductivities and simple application, all of which make it an alternative to solders, thermal adhesives or pads. It is widely used in power and microprocessor applications, most of which involve large areas to be used for heat transfer. However, for years thermal overload failure of power modules and chips has been a pressing problem due to pump-out of thermal grease as a die or module thermal interface material (TIM): Most thermal greases are Bingham fluids and thus not solids, so they can be squeezed out from in between the gap, driven by thermo-mechanical action of the adjacent layers as e.g. DCB substrate or silicon chip with the heat sink. Today, thermal greases have to be qualified in lengthy stress tests in a product relevant environment which consumes substantial resources as often a system test is required. Therefore, a fast test is necessary which accelerates testing and thus allows a fast screening of commercial greases on one hand, and guidelines for material development on the other. For that purpose this paper addresses this topic in a combined simulative and experimental way, where at the same time a novel test procedure is proposed for accelerated grease pump-out testing (GPOT) in the framework of a completely new approach, combining loading with in-situ failure analytical techniques and decoupling thermal from mechanical loading. This allows for the first time a realistic loading of greases during accelerated testing with testing times below one hour. The method is demonstrated on various commercial and custom greases, varying their composition and structure, and benchmarked against industry standard thermal cycling tests. Further, two fundamental failure mechanisms have been identified being at work simultaneously, notably fluid transport (which constitutes actually a pump-in phenomenon) and air entrapment. We were able to identify key properties of the materials and loading variables, on which their intensity depends.","PeriodicalId":357224,"journal":{"name":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Accelerated Pump Out Testing for Thermal Greases\",\"authors\":\"B. Wunderle, D. May, J. Heilmann, J. Arnold, J. Hirscheider, Y. Li, J. Bauer, R. Schacht, M. A. Ras\",\"doi\":\"10.1109/EUROSIME.2019.8724540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal greases allow a low stress bond at low bond line thicknesses (BLT) at medium thermal conductivities and simple application, all of which make it an alternative to solders, thermal adhesives or pads. It is widely used in power and microprocessor applications, most of which involve large areas to be used for heat transfer. However, for years thermal overload failure of power modules and chips has been a pressing problem due to pump-out of thermal grease as a die or module thermal interface material (TIM): Most thermal greases are Bingham fluids and thus not solids, so they can be squeezed out from in between the gap, driven by thermo-mechanical action of the adjacent layers as e.g. DCB substrate or silicon chip with the heat sink. Today, thermal greases have to be qualified in lengthy stress tests in a product relevant environment which consumes substantial resources as often a system test is required. Therefore, a fast test is necessary which accelerates testing and thus allows a fast screening of commercial greases on one hand, and guidelines for material development on the other. For that purpose this paper addresses this topic in a combined simulative and experimental way, where at the same time a novel test procedure is proposed for accelerated grease pump-out testing (GPOT) in the framework of a completely new approach, combining loading with in-situ failure analytical techniques and decoupling thermal from mechanical loading. This allows for the first time a realistic loading of greases during accelerated testing with testing times below one hour. The method is demonstrated on various commercial and custom greases, varying their composition and structure, and benchmarked against industry standard thermal cycling tests. Further, two fundamental failure mechanisms have been identified being at work simultaneously, notably fluid transport (which constitutes actually a pump-in phenomenon) and air entrapment. We were able to identify key properties of the materials and loading variables, on which their intensity depends.\",\"PeriodicalId\":357224,\"journal\":{\"name\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"319 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2019.8724540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2019.8724540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

热润滑脂允许在中等导热系数下,在低粘合线厚度(BLT)下进行低应力粘合,并且应用简单,所有这些都使其成为焊料,热粘合剂或衬垫的替代品。它广泛应用于电源和微处理器应用,其中大多数涉及大面积用于传热。然而,多年来,由于热润滑脂作为模具或模块热界面材料(TIM)的泵出,功率模块和芯片的热过载故障一直是一个迫在眉睫的问题:大多数热润滑脂是宾厄姆流体,因此不是固体,因此它们可以在邻近层的热机械作用下从间隙中挤出,例如DCB衬底或带有散热器的硅芯片。今天,热润滑脂必须在与产品相关的环境中进行长时间的压力测试,这消耗了大量的资源,因为通常需要进行系统测试。因此,快速测试是必要的,它可以加速测试,从而一方面可以快速筛选商业润滑脂,另一方面可以指导材料开发。为此,本文以模拟和实验相结合的方式解决了这一问题,同时提出了一种全新方法框架下的加速油脂泵出测试(GPOT)的新测试程序,将加载与原位失效分析技术相结合,并将热与机械加载解耦。这允许在加速测试期间首次实际加载润滑脂,测试时间低于一小时。该方法在各种商业和定制润滑脂上进行了演示,改变了它们的成分和结构,并对工业标准热循环测试进行了基准测试。此外,已经确定了两种基本失效机制同时起作用,特别是流体输运(实际上构成泵入现象)和空气夹持。我们能够确定材料的关键特性和载荷变量,它们的强度取决于这些变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated Pump Out Testing for Thermal Greases
Thermal greases allow a low stress bond at low bond line thicknesses (BLT) at medium thermal conductivities and simple application, all of which make it an alternative to solders, thermal adhesives or pads. It is widely used in power and microprocessor applications, most of which involve large areas to be used for heat transfer. However, for years thermal overload failure of power modules and chips has been a pressing problem due to pump-out of thermal grease as a die or module thermal interface material (TIM): Most thermal greases are Bingham fluids and thus not solids, so they can be squeezed out from in between the gap, driven by thermo-mechanical action of the adjacent layers as e.g. DCB substrate or silicon chip with the heat sink. Today, thermal greases have to be qualified in lengthy stress tests in a product relevant environment which consumes substantial resources as often a system test is required. Therefore, a fast test is necessary which accelerates testing and thus allows a fast screening of commercial greases on one hand, and guidelines for material development on the other. For that purpose this paper addresses this topic in a combined simulative and experimental way, where at the same time a novel test procedure is proposed for accelerated grease pump-out testing (GPOT) in the framework of a completely new approach, combining loading with in-situ failure analytical techniques and decoupling thermal from mechanical loading. This allows for the first time a realistic loading of greases during accelerated testing with testing times below one hour. The method is demonstrated on various commercial and custom greases, varying their composition and structure, and benchmarked against industry standard thermal cycling tests. Further, two fundamental failure mechanisms have been identified being at work simultaneously, notably fluid transport (which constitutes actually a pump-in phenomenon) and air entrapment. We were able to identify key properties of the materials and loading variables, on which their intensity depends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信