实时在线学习注意力跟踪器

D. X. H. Chew, T. Teo
{"title":"实时在线学习注意力跟踪器","authors":"D. X. H. Chew, T. Teo","doi":"10.1109/TALE54877.2022.00073","DOIUrl":null,"url":null,"abstract":"As a result of the coronavirus pandemic, online learning has become an essential tool for institutions. Attention-aware systems monitor learners’ attention to ensure an effective e-learning experience, from multi-metric facial analysis tools to electroencephalogram hardware. This paper proposes a low-cost systematic approach that builds on existing web application interfaces to assess students’ attention levels in real-time during online classes. The solution uses an end-to-end approach that estimates average attention scores based on head pose features. Then, this aggregated data can be used to improve teacher efficacy. Test lessons show that the learner attention levels can be effectively captured effectively using a browser-based application hosted on the instructor’s end, with an average of 15 frames per second (FPS).","PeriodicalId":369501,"journal":{"name":"2022 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Online Learning Attention Tracker\",\"authors\":\"D. X. H. Chew, T. Teo\",\"doi\":\"10.1109/TALE54877.2022.00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a result of the coronavirus pandemic, online learning has become an essential tool for institutions. Attention-aware systems monitor learners’ attention to ensure an effective e-learning experience, from multi-metric facial analysis tools to electroencephalogram hardware. This paper proposes a low-cost systematic approach that builds on existing web application interfaces to assess students’ attention levels in real-time during online classes. The solution uses an end-to-end approach that estimates average attention scores based on head pose features. Then, this aggregated data can be used to improve teacher efficacy. Test lessons show that the learner attention levels can be effectively captured effectively using a browser-based application hosted on the instructor’s end, with an average of 15 frames per second (FPS).\",\"PeriodicalId\":369501,\"journal\":{\"name\":\"2022 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TALE54877.2022.00073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TALE54877.2022.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受新冠肺炎疫情影响,在线学习已成为各院校必不可少的工具。注意力感知系统监控学习者的注意力,以确保有效的电子学习体验,从多度量面部分析工具到脑电图硬件。本文提出了一种低成本的系统方法,该方法建立在现有的web应用程序接口上,以实时评估在线课程中学生的注意力水平。该解决方案使用端到端方法,根据头部姿势特征估计平均注意力得分。然后,这些汇总的数据可以用来提高教师的效能。测试课程表明,学习者的注意力水平可以通过基于浏览器的应用程序有效地捕获,平均每秒15帧(FPS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Online Learning Attention Tracker
As a result of the coronavirus pandemic, online learning has become an essential tool for institutions. Attention-aware systems monitor learners’ attention to ensure an effective e-learning experience, from multi-metric facial analysis tools to electroencephalogram hardware. This paper proposes a low-cost systematic approach that builds on existing web application interfaces to assess students’ attention levels in real-time during online classes. The solution uses an end-to-end approach that estimates average attention scores based on head pose features. Then, this aggregated data can be used to improve teacher efficacy. Test lessons show that the learner attention levels can be effectively captured effectively using a browser-based application hosted on the instructor’s end, with an average of 15 frames per second (FPS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信