S. Amoroso, Jaehyun Lee, A. Brown, P. Asenov, Xi-Wei Lin, V. Moroz, Thomas Yang
{"title":"DRAM写入和保留性能的高西格玛分析:tcad - spice方法","authors":"S. Amoroso, Jaehyun Lee, A. Brown, P. Asenov, Xi-Wei Lin, V. Moroz, Thomas Yang","doi":"10.23919/SISPAD49475.2020.9241690","DOIUrl":null,"url":null,"abstract":"This paper presents a TCAD-to-SPICE high-sigma analysis of DRAM write and retention performance. Both statistical and process-induced variability are taken into- account. We highlight that the interplay between discrete traps and discrete dopants is ruling the leakage statistical tails and therefore can play a fundamental role in determining yield and reliability of ultra-scaled DRAMs.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-sigma analysis of DRAM write and retention performance: a TCAD-to-SPICE approach\",\"authors\":\"S. Amoroso, Jaehyun Lee, A. Brown, P. Asenov, Xi-Wei Lin, V. Moroz, Thomas Yang\",\"doi\":\"10.23919/SISPAD49475.2020.9241690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a TCAD-to-SPICE high-sigma analysis of DRAM write and retention performance. Both statistical and process-induced variability are taken into- account. We highlight that the interplay between discrete traps and discrete dopants is ruling the leakage statistical tails and therefore can play a fundamental role in determining yield and reliability of ultra-scaled DRAMs.\",\"PeriodicalId\":206964,\"journal\":{\"name\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SISPAD49475.2020.9241690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-sigma analysis of DRAM write and retention performance: a TCAD-to-SPICE approach
This paper presents a TCAD-to-SPICE high-sigma analysis of DRAM write and retention performance. Both statistical and process-induced variability are taken into- account. We highlight that the interplay between discrete traps and discrete dopants is ruling the leakage statistical tails and therefore can play a fundamental role in determining yield and reliability of ultra-scaled DRAMs.