电荷注入技术研究高k栅极介质中氧空位

P. Liao, S. Gao, K. Joshi, Y. Lee, T. -. Lee, H. Wang, S. Chien, J. Wang, J. Shih, K. Wu
{"title":"电荷注入技术研究高k栅极介质中氧空位","authors":"P. Liao, S. Gao, K. Joshi, Y. Lee, T. -. Lee, H. Wang, S. Chien, J. Wang, J. Shih, K. Wu","doi":"10.1109/IRPS.2016.7574534","DOIUrl":null,"url":null,"abstract":"A new technique by charge injection is introduced to investigate the charging effect on weak oxide in the gate stack of high-k metal gate process. The oxide with extra oxygen vacancy is more vulnerable to process charging, as verified by the correlation of Vt vs. subthreshold swing degradation, SILC spectrum, and chemical bonding state analysis using X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). Degradation of pFET threshold voltage (Vt) shift by gate injection under Source/Drain (S/D) floating condition is observed, this is attributed to the oxide damage by the accelerated carriers from S/D reverse bias. The convolution of “random dopant fluctuation (RDF) + charging effect” is expected to magnify devices Vt shift, especially for those worse bit cells with high Vt as verified by the Monte-Carlo simulation. We further demonstrate that process with tighten Vt distribution, such as FinFET technology with less implant process and better charge release immunity, is less vulnerable to the charging induced Vt shift.","PeriodicalId":172129,"journal":{"name":"2016 IEEE International Reliability Physics Symposium (IRPS)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of oxygen vacancy in high-k gate dielectric by charge injection technique\",\"authors\":\"P. Liao, S. Gao, K. Joshi, Y. Lee, T. -. Lee, H. Wang, S. Chien, J. Wang, J. Shih, K. Wu\",\"doi\":\"10.1109/IRPS.2016.7574534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new technique by charge injection is introduced to investigate the charging effect on weak oxide in the gate stack of high-k metal gate process. The oxide with extra oxygen vacancy is more vulnerable to process charging, as verified by the correlation of Vt vs. subthreshold swing degradation, SILC spectrum, and chemical bonding state analysis using X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). Degradation of pFET threshold voltage (Vt) shift by gate injection under Source/Drain (S/D) floating condition is observed, this is attributed to the oxide damage by the accelerated carriers from S/D reverse bias. The convolution of “random dopant fluctuation (RDF) + charging effect” is expected to magnify devices Vt shift, especially for those worse bit cells with high Vt as verified by the Monte-Carlo simulation. We further demonstrate that process with tighten Vt distribution, such as FinFET technology with less implant process and better charge release immunity, is less vulnerable to the charging induced Vt shift.\",\"PeriodicalId\":172129,\"journal\":{\"name\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2016.7574534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2016.7574534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种新的电荷注入技术,用于研究高钾金属栅工艺栅堆中弱氧化物的电荷效应。利用x射线光电子能谱(XPS)和电子能量损失能谱(EELS)对Vt与亚阈值摆动降解的相关性、SILC谱和化学键态分析证实,具有额外氧空位的氧化物更容易受到工艺充电的影响。在源/漏(S/D)浮动条件下,栅极注入导致pet阈值电压(Vt)漂移下降,这是由于S/D反向偏压加速载流子造成的氧化物损伤。“随机掺杂波动(RDF) +充电效应”的卷积有望放大器件的Vt位移,特别是对于那些具有高Vt的较差位单元,Monte-Carlo模拟验证了这一点。我们进一步证明了Vt分布更紧的工艺,如具有更少植入过程和更好电荷释放免疫力的FinFET技术,更不容易受到电荷引起的Vt移位的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of oxygen vacancy in high-k gate dielectric by charge injection technique
A new technique by charge injection is introduced to investigate the charging effect on weak oxide in the gate stack of high-k metal gate process. The oxide with extra oxygen vacancy is more vulnerable to process charging, as verified by the correlation of Vt vs. subthreshold swing degradation, SILC spectrum, and chemical bonding state analysis using X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). Degradation of pFET threshold voltage (Vt) shift by gate injection under Source/Drain (S/D) floating condition is observed, this is attributed to the oxide damage by the accelerated carriers from S/D reverse bias. The convolution of “random dopant fluctuation (RDF) + charging effect” is expected to magnify devices Vt shift, especially for those worse bit cells with high Vt as verified by the Monte-Carlo simulation. We further demonstrate that process with tighten Vt distribution, such as FinFET technology with less implant process and better charge release immunity, is less vulnerable to the charging induced Vt shift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信