{"title":"模拟多音信号发生器内置自检应用","authors":"A. Lu, G. Roberts","doi":"10.1109/TEST.1994.528010","DOIUrl":null,"url":null,"abstract":"This paper presents the design of an analog oscillator capable of generating multi-tone signals by encoding the information in an oversampled delta-sigma modulated bit-stream. With the exception of an imprecise lowpass filter, the proposed design is completely digital allowing accurate control of the amplitude, frequency, and phase of all sinusoids making up the multi-tone signal. Simulations and FPGA experiments performed to date have verified the performance of the proposed design which is envisioned to open new directions in the mixed analog/digital testing field.","PeriodicalId":309921,"journal":{"name":"Proceedings., International Test Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"An analog multi-tone signal generator for built-in-self-test applications\",\"authors\":\"A. Lu, G. Roberts\",\"doi\":\"10.1109/TEST.1994.528010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of an analog oscillator capable of generating multi-tone signals by encoding the information in an oversampled delta-sigma modulated bit-stream. With the exception of an imprecise lowpass filter, the proposed design is completely digital allowing accurate control of the amplitude, frequency, and phase of all sinusoids making up the multi-tone signal. Simulations and FPGA experiments performed to date have verified the performance of the proposed design which is envisioned to open new directions in the mixed analog/digital testing field.\",\"PeriodicalId\":309921,\"journal\":{\"name\":\"Proceedings., International Test Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings., International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.1994.528010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings., International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.1994.528010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An analog multi-tone signal generator for built-in-self-test applications
This paper presents the design of an analog oscillator capable of generating multi-tone signals by encoding the information in an oversampled delta-sigma modulated bit-stream. With the exception of an imprecise lowpass filter, the proposed design is completely digital allowing accurate control of the amplitude, frequency, and phase of all sinusoids making up the multi-tone signal. Simulations and FPGA experiments performed to date have verified the performance of the proposed design which is envisioned to open new directions in the mixed analog/digital testing field.