{"title":"使用无监督学习筛选潜在客户回报的高级异常值检测","authors":"Hanbin Hu, Nguyen Nguyen, Chen He, Peng Li","doi":"10.1109/ITC44778.2020.9325225","DOIUrl":null,"url":null,"abstract":"Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multiclass classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Advanced Outlier Detection Using Unsupervised Learning for Screening Potential Customer Returns\",\"authors\":\"Hanbin Hu, Nguyen Nguyen, Chen He, Peng Li\",\"doi\":\"10.1109/ITC44778.2020.9325225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multiclass classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach.\",\"PeriodicalId\":251504,\"journal\":{\"name\":\"2020 IEEE International Test Conference (ITC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC44778.2020.9325225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced Outlier Detection Using Unsupervised Learning for Screening Potential Customer Returns
Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multiclass classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach.