使用无监督学习筛选潜在客户回报的高级异常值检测

Hanbin Hu, Nguyen Nguyen, Chen He, Peng Li
{"title":"使用无监督学习筛选潜在客户回报的高级异常值检测","authors":"Hanbin Hu, Nguyen Nguyen, Chen He, Peng Li","doi":"10.1109/ITC44778.2020.9325225","DOIUrl":null,"url":null,"abstract":"Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multiclass classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Advanced Outlier Detection Using Unsupervised Learning for Screening Potential Customer Returns\",\"authors\":\"Hanbin Hu, Nguyen Nguyen, Chen He, Peng Li\",\"doi\":\"10.1109/ITC44778.2020.9325225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multiclass classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach.\",\"PeriodicalId\":251504,\"journal\":{\"name\":\"2020 IEEE International Test Conference (ITC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC44778.2020.9325225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于客户故障数据的极度稀缺,在相关参数测试测量形成的高维输入特征空间中可靠地筛选出那些罕见的缺陷是一项挑战。本文研究了基于6个工业测试数据集的几种无监督学习技术,并提出通过一组变换对训练数据进行自标记,从而训练出更鲁棒的无监督学习模型。使用标记数据,我们通过监督训练训练一个多类分类器。多类分类决策相对于未知输入数据的优度被用作缺陷异常的正态性评分。此外,我们建议使用可逆信息无损变换来保留数据信息,提高所提出的自标记方法的性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Outlier Detection Using Unsupervised Learning for Screening Potential Customer Returns
Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multiclass classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信