混沌时间序列的分析与预测

A. Sahnoune, Elhadj Zeraoulia, D. Berkani
{"title":"混沌时间序列的分析与预测","authors":"A. Sahnoune, Elhadj Zeraoulia, D. Berkani","doi":"10.1109/PAIS56586.2022.9946871","DOIUrl":null,"url":null,"abstract":"Prediction of time-series has a growing interest in many real-world applications such as prediction of solar radiation for effective use of photovoltaic systems, prediction of electric power demand, weather forecasting, business and financial planning. This contribution deals with analysis and prediction of chaotic time series generated from logistic map using feed-forward back-propagation Neural Network. Simulation results, confirm the effectiveness of this model for predicting chaotic time series.","PeriodicalId":266229,"journal":{"name":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and prediction of chaotic time series\",\"authors\":\"A. Sahnoune, Elhadj Zeraoulia, D. Berkani\",\"doi\":\"10.1109/PAIS56586.2022.9946871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of time-series has a growing interest in many real-world applications such as prediction of solar radiation for effective use of photovoltaic systems, prediction of electric power demand, weather forecasting, business and financial planning. This contribution deals with analysis and prediction of chaotic time series generated from logistic map using feed-forward back-propagation Neural Network. Simulation results, confirm the effectiveness of this model for predicting chaotic time series.\",\"PeriodicalId\":266229,\"journal\":{\"name\":\"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAIS56586.2022.9946871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAIS56586.2022.9946871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间序列预测在许多现实世界的应用中有越来越大的兴趣,例如为有效利用光伏系统预测太阳辐射、预测电力需求、天气预报、商业和财务规划。本文研究了利用前馈反向传播神经网络对逻辑映射产生的混沌时间序列进行分析和预测。仿真结果验证了该模型对混沌时间序列预测的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and prediction of chaotic time series
Prediction of time-series has a growing interest in many real-world applications such as prediction of solar radiation for effective use of photovoltaic systems, prediction of electric power demand, weather forecasting, business and financial planning. This contribution deals with analysis and prediction of chaotic time series generated from logistic map using feed-forward back-propagation Neural Network. Simulation results, confirm the effectiveness of this model for predicting chaotic time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信