无焊剂焊接技术的基本原理

C.C. Lee, Jongsung Kim
{"title":"无焊剂焊接技术的基本原理","authors":"C.C. Lee, Jongsung Kim","doi":"10.1109/ISAPM.2005.1432041","DOIUrl":null,"url":null,"abstract":"Fluxless (flux-free) soldering technology deals with investigating and developing techniques and methods that can eliminate the use of fluxes in the soldering process. The fluxless feature in soldering processes has become increasing more important and received more attention from industries because there are more and more devices and products that cannot take fluxes in the soldering process. Examples are MEMS devices, sensor devices, biomedical devices, and photonic devices. In addition, in flip-chip soldering processes with very small gap between chips and substrates, flux residues are hard to clean out or are embedded in the underfills. The residues may reduce the reliability of the resulting flip-chip devices. There are two basic fluxless approaches that have been reported. The first is to use chemicals or RF plasma to convert or to remove the oxide layer that already exists. The existence of oxide layer is the reason why the flux is needed in nearly all soldering operations. The second approach is to remove the root cause, which is solder oxidation. This is accomplished by producing the solder materials in a non-oxidizing environment, followed immediately by capping the solder with a barrier layer that would prevent oxygen from penetrating into the solder layer. In this paper, we first present the root cause of needing fluxes in the soldering process. The fluxless processes dealing with oxides are summarized. The four fundamental steps of the oxidation prevention approach are reported. A fluxless process based on Sn-rich Sn-Au alloys is described as an example to illustrate the fluxless fundamentals. Results show that strong and nearly void-free joints can indeed be produced using this new technology.","PeriodicalId":181674,"journal":{"name":"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Fundamentals of fluxless soldering technology\",\"authors\":\"C.C. Lee, Jongsung Kim\",\"doi\":\"10.1109/ISAPM.2005.1432041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluxless (flux-free) soldering technology deals with investigating and developing techniques and methods that can eliminate the use of fluxes in the soldering process. The fluxless feature in soldering processes has become increasing more important and received more attention from industries because there are more and more devices and products that cannot take fluxes in the soldering process. Examples are MEMS devices, sensor devices, biomedical devices, and photonic devices. In addition, in flip-chip soldering processes with very small gap between chips and substrates, flux residues are hard to clean out or are embedded in the underfills. The residues may reduce the reliability of the resulting flip-chip devices. There are two basic fluxless approaches that have been reported. The first is to use chemicals or RF plasma to convert or to remove the oxide layer that already exists. The existence of oxide layer is the reason why the flux is needed in nearly all soldering operations. The second approach is to remove the root cause, which is solder oxidation. This is accomplished by producing the solder materials in a non-oxidizing environment, followed immediately by capping the solder with a barrier layer that would prevent oxygen from penetrating into the solder layer. In this paper, we first present the root cause of needing fluxes in the soldering process. The fluxless processes dealing with oxides are summarized. The four fundamental steps of the oxidation prevention approach are reported. A fluxless process based on Sn-rich Sn-Au alloys is described as an example to illustrate the fluxless fundamentals. Results show that strong and nearly void-free joints can indeed be produced using this new technology.\",\"PeriodicalId\":181674,\"journal\":{\"name\":\"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPM.2005.1432041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPM.2005.1432041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

无助焊剂(无助焊剂)焊接技术涉及研究和开发可以在焊接过程中消除助焊剂使用的技术和方法。由于越来越多的器件和产品在焊接过程中不能使用助焊剂,焊接过程中的无助焊剂特性越来越受到工业的重视和重视。例如MEMS器件、传感器器件、生物医学器件和光子器件。此外,在芯片与衬底之间间隙很小的倒装芯片焊接工艺中,焊剂残留物难以清除或嵌入衬底。这些残留物可能会降低所得到的倒装芯片器件的可靠性。已经报道了两种基本的无通量方法。第一种是使用化学物质或射频等离子体来转换或去除已经存在的氧化层。氧化层的存在是几乎所有焊接操作都需要助焊剂的原因。第二种方法是消除根本原因,即焊料氧化。这是通过在非氧化环境中生产焊料材料来实现的,然后立即用阻挡层覆盖焊料,以防止氧气渗透到焊料层中。本文首先介绍了焊接过程中需要焊剂的根本原因。综述了处理氧化物的无熔剂工艺。报告了防氧化方法的四个基本步骤。以富锡锡金合金为基础的无焊剂工艺为例,说明了无焊剂的基本原理。结果表明,使用这种新技术确实可以生产出坚固且几乎无空洞的关节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamentals of fluxless soldering technology
Fluxless (flux-free) soldering technology deals with investigating and developing techniques and methods that can eliminate the use of fluxes in the soldering process. The fluxless feature in soldering processes has become increasing more important and received more attention from industries because there are more and more devices and products that cannot take fluxes in the soldering process. Examples are MEMS devices, sensor devices, biomedical devices, and photonic devices. In addition, in flip-chip soldering processes with very small gap between chips and substrates, flux residues are hard to clean out or are embedded in the underfills. The residues may reduce the reliability of the resulting flip-chip devices. There are two basic fluxless approaches that have been reported. The first is to use chemicals or RF plasma to convert or to remove the oxide layer that already exists. The existence of oxide layer is the reason why the flux is needed in nearly all soldering operations. The second approach is to remove the root cause, which is solder oxidation. This is accomplished by producing the solder materials in a non-oxidizing environment, followed immediately by capping the solder with a barrier layer that would prevent oxygen from penetrating into the solder layer. In this paper, we first present the root cause of needing fluxes in the soldering process. The fluxless processes dealing with oxides are summarized. The four fundamental steps of the oxidation prevention approach are reported. A fluxless process based on Sn-rich Sn-Au alloys is described as an example to illustrate the fluxless fundamentals. Results show that strong and nearly void-free joints can indeed be produced using this new technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信