E. Liao, A. Tay, S. Ang, H. Feng, R. Nagarajan, V. Kripesh, R. Kumar, M. Iyer
{"title":"用于超细间距晶圆级封装的基于mems的兼容互连","authors":"E. Liao, A. Tay, S. Ang, H. Feng, R. Nagarajan, V. Kripesh, R. Kumar, M. Iyer","doi":"10.1109/ECTC.2006.1645812","DOIUrl":null,"url":null,"abstract":"A novel compliant flip-chip interconnect in the form of a planar microspring is presented in this paper. Different spring geometries are evaluated and compared in terms of compliances and electrical parasitics. It is shown that the J-shape spring design gives a better balanced performance. Further numerical studies reveal the geometric dependence of the compliances of J-shape spring interconnects, and also the influence of the sacrificial material upon the electrical performance of the interconnects. The wafer-level process flow for fabrication of the planar microspring interconnects is described and discussed. Prototype interconnects are fabricated by combining planar technology and 3D surface micromachining technology","PeriodicalId":194969,"journal":{"name":"56th Electronic Components and Technology Conference 2006","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A MEMS-based compliant interconnect for ultra-fine-pitch wafer level packaging\",\"authors\":\"E. Liao, A. Tay, S. Ang, H. Feng, R. Nagarajan, V. Kripesh, R. Kumar, M. Iyer\",\"doi\":\"10.1109/ECTC.2006.1645812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel compliant flip-chip interconnect in the form of a planar microspring is presented in this paper. Different spring geometries are evaluated and compared in terms of compliances and electrical parasitics. It is shown that the J-shape spring design gives a better balanced performance. Further numerical studies reveal the geometric dependence of the compliances of J-shape spring interconnects, and also the influence of the sacrificial material upon the electrical performance of the interconnects. The wafer-level process flow for fabrication of the planar microspring interconnects is described and discussed. Prototype interconnects are fabricated by combining planar technology and 3D surface micromachining technology\",\"PeriodicalId\":194969,\"journal\":{\"name\":\"56th Electronic Components and Technology Conference 2006\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"56th Electronic Components and Technology Conference 2006\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2006.1645812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"56th Electronic Components and Technology Conference 2006","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2006.1645812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A MEMS-based compliant interconnect for ultra-fine-pitch wafer level packaging
A novel compliant flip-chip interconnect in the form of a planar microspring is presented in this paper. Different spring geometries are evaluated and compared in terms of compliances and electrical parasitics. It is shown that the J-shape spring design gives a better balanced performance. Further numerical studies reveal the geometric dependence of the compliances of J-shape spring interconnects, and also the influence of the sacrificial material upon the electrical performance of the interconnects. The wafer-level process flow for fabrication of the planar microspring interconnects is described and discussed. Prototype interconnects are fabricated by combining planar technology and 3D surface micromachining technology