双掺杂PHEMTs的隧道效应与冲击电离

K. Kalna, A. Asenov
{"title":"双掺杂PHEMTs的隧道效应与冲击电离","authors":"K. Kalna, A. Asenov","doi":"10.1109/ESSDERC.2002.194929","DOIUrl":null,"url":null,"abstract":"We investigate the dominant breakdown mechanism in aggressively scaled pseudomorphic high electron mobility transistors (PHEMTs) with double delta-doping structure by Monte Carlo device simulations. Two breakdown mechanisms: channel impact ionization and thermionic tunnelling from the gate, are considered for two possible placements of the second delta doping layer either below the channel or between the gate and the first delta doping layer. Thermionic tunnelling starts at very low drain voltages but quickly saturates having a greater effect on those PHEMTs with the second doping layer placed above the original doping. A threshold for impact ionization occurs at larger drain voltages which should assure the reasonable operation voltage scale of double doped PHEMTs. Those double doped PHEMTs with the second delta doping layer placed below the channeldeteriorate faster with the reduction of the channel length due to impact ionization thanthosedeviceswith theseconddopinglayerabove the original doping.","PeriodicalId":207896,"journal":{"name":"32nd European Solid-State Device Research Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tunnelling and Impact Ionization in Scaled Double Doped PHEMTs\",\"authors\":\"K. Kalna, A. Asenov\",\"doi\":\"10.1109/ESSDERC.2002.194929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the dominant breakdown mechanism in aggressively scaled pseudomorphic high electron mobility transistors (PHEMTs) with double delta-doping structure by Monte Carlo device simulations. Two breakdown mechanisms: channel impact ionization and thermionic tunnelling from the gate, are considered for two possible placements of the second delta doping layer either below the channel or between the gate and the first delta doping layer. Thermionic tunnelling starts at very low drain voltages but quickly saturates having a greater effect on those PHEMTs with the second doping layer placed above the original doping. A threshold for impact ionization occurs at larger drain voltages which should assure the reasonable operation voltage scale of double doped PHEMTs. Those double doped PHEMTs with the second delta doping layer placed below the channeldeteriorate faster with the reduction of the channel length due to impact ionization thanthosedeviceswith theseconddopinglayerabove the original doping.\",\"PeriodicalId\":207896,\"journal\":{\"name\":\"32nd European Solid-State Device Research Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd European Solid-State Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2002.194929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd European Solid-State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2002.194929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过蒙特卡罗器件模拟研究了双δ掺杂结构的大尺度伪晶高电子迁移率晶体管(PHEMTs)的主导击穿机制。考虑了两种击穿机制:通道冲击电离和从栅极产生的热离子隧穿,用于第二δ掺杂层在通道下方或在栅极和第一δ掺杂层之间的两种可能位置。热电子隧穿在极低的漏极电压下开始,但很快饱和,对那些在原始掺杂之上放置第二掺杂层的phemt有更大的影响。冲击电离的阈值出现在较大的漏极电压下,这保证了双掺杂phemt的合理工作电压范围。在通道下方放置第二层δ掺杂层的双掺杂phemt,由于冲击电离导致通道长度减少,其劣化速度比在原始掺杂之上放置第二层δ掺杂层的器件更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunnelling and Impact Ionization in Scaled Double Doped PHEMTs
We investigate the dominant breakdown mechanism in aggressively scaled pseudomorphic high electron mobility transistors (PHEMTs) with double delta-doping structure by Monte Carlo device simulations. Two breakdown mechanisms: channel impact ionization and thermionic tunnelling from the gate, are considered for two possible placements of the second delta doping layer either below the channel or between the gate and the first delta doping layer. Thermionic tunnelling starts at very low drain voltages but quickly saturates having a greater effect on those PHEMTs with the second doping layer placed above the original doping. A threshold for impact ionization occurs at larger drain voltages which should assure the reasonable operation voltage scale of double doped PHEMTs. Those double doped PHEMTs with the second delta doping layer placed below the channeldeteriorate faster with the reduction of the channel length due to impact ionization thanthosedeviceswith theseconddopinglayerabove the original doping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信