Yunna Sun, Seung-lo Lee, Qiu Xu, Jiangbo Luo, Hongfang Li, Yan Wang, G. Ding, Xiaolin Zhao
{"title":"三维集成电路中基于碳纳米管阵列的热线和微通道散热器的高效集成散热系统","authors":"Yunna Sun, Seung-lo Lee, Qiu Xu, Jiangbo Luo, Hongfang Li, Yan Wang, G. Ding, Xiaolin Zhao","doi":"10.1109/EPTC.2016.7861574","DOIUrl":null,"url":null,"abstract":"This work mainly focused on the heat dissipation of the 3D integrated circulates (ICs). In order to satisfy the urgent heat dissipation needs, the optimal design of heat sink and optimized path for transmitting heat is one of the most promising and effective ways. Two methods have been proposed for solving the heat dissipation issues. First one was the optimized microchannel with pin fin integrated with the high-power chips or interposers. The influence of dimension of the pin fin on the heat dissipation was analyzed and optimized by FEM. The demotion of microchannel with the optimized pin fin achieved to more than 50 W/cm2 when fluid (water) speed was 1 m/s. The secondary was a novel heat line design with a cold end, which was composed of a copper plate containing nano arrays and pin fin. With the heat line integrated with Cu-pad connected with pin fin and CNT arrays, the temperature of hotspot has dropped by 17.89% (fluid cooling mode) and 9.95% (air cooling mode).","PeriodicalId":136525,"journal":{"name":"2016 IEEE 18th Electronics Packaging Technology Conference (EPTC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A high efficient integrated heat dissipation systems with CNT array based heat lines and microchannel heat sink in 3D ICs\",\"authors\":\"Yunna Sun, Seung-lo Lee, Qiu Xu, Jiangbo Luo, Hongfang Li, Yan Wang, G. Ding, Xiaolin Zhao\",\"doi\":\"10.1109/EPTC.2016.7861574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work mainly focused on the heat dissipation of the 3D integrated circulates (ICs). In order to satisfy the urgent heat dissipation needs, the optimal design of heat sink and optimized path for transmitting heat is one of the most promising and effective ways. Two methods have been proposed for solving the heat dissipation issues. First one was the optimized microchannel with pin fin integrated with the high-power chips or interposers. The influence of dimension of the pin fin on the heat dissipation was analyzed and optimized by FEM. The demotion of microchannel with the optimized pin fin achieved to more than 50 W/cm2 when fluid (water) speed was 1 m/s. The secondary was a novel heat line design with a cold end, which was composed of a copper plate containing nano arrays and pin fin. With the heat line integrated with Cu-pad connected with pin fin and CNT arrays, the temperature of hotspot has dropped by 17.89% (fluid cooling mode) and 9.95% (air cooling mode).\",\"PeriodicalId\":136525,\"journal\":{\"name\":\"2016 IEEE 18th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2016.7861574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2016.7861574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high efficient integrated heat dissipation systems with CNT array based heat lines and microchannel heat sink in 3D ICs
This work mainly focused on the heat dissipation of the 3D integrated circulates (ICs). In order to satisfy the urgent heat dissipation needs, the optimal design of heat sink and optimized path for transmitting heat is one of the most promising and effective ways. Two methods have been proposed for solving the heat dissipation issues. First one was the optimized microchannel with pin fin integrated with the high-power chips or interposers. The influence of dimension of the pin fin on the heat dissipation was analyzed and optimized by FEM. The demotion of microchannel with the optimized pin fin achieved to more than 50 W/cm2 when fluid (water) speed was 1 m/s. The secondary was a novel heat line design with a cold end, which was composed of a copper plate containing nano arrays and pin fin. With the heat line integrated with Cu-pad connected with pin fin and CNT arrays, the temperature of hotspot has dropped by 17.89% (fluid cooling mode) and 9.95% (air cooling mode).