利用目标测量改进超na OPC模型参数提取

B. Ward
{"title":"利用目标测量改进超na OPC模型参数提取","authors":"B. Ward","doi":"10.1117/12.746576","DOIUrl":null,"url":null,"abstract":"An alternative method of OPC model fitting based on model parameter sensitivity is presented. Theoretical advantages are discussed, including improved model quality and time to results. The parameter sensitivity method is applied using a basic optical model to 32nm logic node experimental data. Results include standard and parameter sensitivity model fits using both constant and variable threshold models. The results show that the parameter sensitivity methodology enables an overall model fit that is more physically-predictive than a standard OPC model fit.","PeriodicalId":308777,"journal":{"name":"SPIE Photomask Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving hyper-NA OPC using targeted measurements for model parameter extraction\",\"authors\":\"B. Ward\",\"doi\":\"10.1117/12.746576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An alternative method of OPC model fitting based on model parameter sensitivity is presented. Theoretical advantages are discussed, including improved model quality and time to results. The parameter sensitivity method is applied using a basic optical model to 32nm logic node experimental data. Results include standard and parameter sensitivity model fits using both constant and variable threshold models. The results show that the parameter sensitivity methodology enables an overall model fit that is more physically-predictive than a standard OPC model fit.\",\"PeriodicalId\":308777,\"journal\":{\"name\":\"SPIE Photomask Technology\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Photomask Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.746576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photomask Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.746576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于模型参数灵敏度的OPC模型拟合方法。讨论了理论上的优点,包括提高模型质量和获得结果的时间。采用基本光学模型对32nm逻辑节点实验数据进行了参数灵敏度分析。结果包括使用常数和可变阈值模型拟合标准和参数灵敏度模型。结果表明,参数灵敏度方法使整体模型拟合比标准OPC模型拟合更具物理预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving hyper-NA OPC using targeted measurements for model parameter extraction
An alternative method of OPC model fitting based on model parameter sensitivity is presented. Theoretical advantages are discussed, including improved model quality and time to results. The parameter sensitivity method is applied using a basic optical model to 32nm logic node experimental data. Results include standard and parameter sensitivity model fits using both constant and variable threshold models. The results show that the parameter sensitivity methodology enables an overall model fit that is more physically-predictive than a standard OPC model fit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信