基于浮栅MOS晶体管的n输入神经元电路模式识别

Fatih Keles, T. Yıldırım
{"title":"基于浮栅MOS晶体管的n输入神经元电路模式识别","authors":"Fatih Keles, T. Yıldırım","doi":"10.1109/EURCON.2009.5167634","DOIUrl":null,"url":null,"abstract":"In this paper, a neural network hardware implementation of pattern recognition using n-input neuron circuits is presented. Floating-gate MOS (FGMOS) based neuron model using four-quadrant analog multiplier with rail-to-rail linear input and FGMOS based differential comparator has been designed and simulated in HSPICE environment. Using the proposed low voltage neuron circuits a neural network was realized. Iris plant data set, which is one of the most well-known pattern recognition databases, was applied to test accuracy of the network.","PeriodicalId":256285,"journal":{"name":"IEEE EUROCON 2009","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pattern recognition using N-input neuron circuits based on floating gate MOS transistors\",\"authors\":\"Fatih Keles, T. Yıldırım\",\"doi\":\"10.1109/EURCON.2009.5167634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a neural network hardware implementation of pattern recognition using n-input neuron circuits is presented. Floating-gate MOS (FGMOS) based neuron model using four-quadrant analog multiplier with rail-to-rail linear input and FGMOS based differential comparator has been designed and simulated in HSPICE environment. Using the proposed low voltage neuron circuits a neural network was realized. Iris plant data set, which is one of the most well-known pattern recognition databases, was applied to test accuracy of the network.\",\"PeriodicalId\":256285,\"journal\":{\"name\":\"IEEE EUROCON 2009\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURCON.2009.5167634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURCON.2009.5167634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于n输入神经元电路的模式识别的神经网络硬件实现。设计了基于四象限轨对轨线性输入模拟乘法器和基于FGMOS的差分比较器的基于浮门MOS (FGMOS)的神经元模型,并在HSPICE环境下进行了仿真。利用所提出的低压神经元电路实现了一个神经网络。鸢尾花植物数据集是最著名的模式识别数据库之一,并用于测试网络的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern recognition using N-input neuron circuits based on floating gate MOS transistors
In this paper, a neural network hardware implementation of pattern recognition using n-input neuron circuits is presented. Floating-gate MOS (FGMOS) based neuron model using four-quadrant analog multiplier with rail-to-rail linear input and FGMOS based differential comparator has been designed and simulated in HSPICE environment. Using the proposed low voltage neuron circuits a neural network was realized. Iris plant data set, which is one of the most well-known pattern recognition databases, was applied to test accuracy of the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信