{"title":"基于遗传算法的大型顺序电路测试图自动生成","authors":"P. Prinetto, M. Rebaudengo, M. Reorda","doi":"10.1109/TEST.1994.527955","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the question of automated test pattern generation for large synchronous sequential circuits and describes an approach based on Genetic Algorithms suitable for even the largest benchmark circuits, together with a prototype system named GATTO. Its effectiveness (in terms of result quality and CPU time requirements) for circuits previously unmanageable is illustrated. The flexibility of the new approach enables users to easily trade off fault coverage and CPU time to suit their needs.","PeriodicalId":309921,"journal":{"name":"Proceedings., International Test Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"An automatic test pattern generator for large sequential circuits based on Genetic Algorithms\",\"authors\":\"P. Prinetto, M. Rebaudengo, M. Reorda\",\"doi\":\"10.1109/TEST.1994.527955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the question of automated test pattern generation for large synchronous sequential circuits and describes an approach based on Genetic Algorithms suitable for even the largest benchmark circuits, together with a prototype system named GATTO. Its effectiveness (in terms of result quality and CPU time requirements) for circuits previously unmanageable is illustrated. The flexibility of the new approach enables users to easily trade off fault coverage and CPU time to suit their needs.\",\"PeriodicalId\":309921,\"journal\":{\"name\":\"Proceedings., International Test Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings., International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.1994.527955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings., International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.1994.527955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An automatic test pattern generator for large sequential circuits based on Genetic Algorithms
This paper is concerned with the question of automated test pattern generation for large synchronous sequential circuits and describes an approach based on Genetic Algorithms suitable for even the largest benchmark circuits, together with a prototype system named GATTO. Its effectiveness (in terms of result quality and CPU time requirements) for circuits previously unmanageable is illustrated. The flexibility of the new approach enables users to easily trade off fault coverage and CPU time to suit their needs.