准分子激光电化学蚀刻硅的研究

Yuhong Long, Liangcai Xiong, T. Shi, Zirong Tang
{"title":"准分子激光电化学蚀刻硅的研究","authors":"Yuhong Long, Liangcai Xiong, T. Shi, Zirong Tang","doi":"10.1109/NEMS.2007.352243","DOIUrl":null,"url":null,"abstract":"To further understand the behavior of laser-induced electrochemical etching process, the experiments of micromachining silicon by laser-induced electrochemical etching were carried out. 248nm excimer laser as light source is adopted in this work with the power of 109W/cm2 for the first time and KOH solution is used as electrolyte. Based on the experiment results, the surface images and etching rate are analyzed in detail. It is verified that the compound technique is a combination of laser etching, electrochemical etching and coupling etching, and laser etching is dominating in the compound process. Besides, both liquid-enhanced pressure and jet shock pressure can preferably improve the etching rate. At the same time, the anisotropic etching stop of silicon in alkaline solution is solved in this study. As a result, this process can be applied to transfer pattern without mask, and it possesses the ability of machining large aspect ratio micro structures.","PeriodicalId":364039,"journal":{"name":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Study of Excimer Laser Electrochemical Etching Silicon\",\"authors\":\"Yuhong Long, Liangcai Xiong, T. Shi, Zirong Tang\",\"doi\":\"10.1109/NEMS.2007.352243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To further understand the behavior of laser-induced electrochemical etching process, the experiments of micromachining silicon by laser-induced electrochemical etching were carried out. 248nm excimer laser as light source is adopted in this work with the power of 109W/cm2 for the first time and KOH solution is used as electrolyte. Based on the experiment results, the surface images and etching rate are analyzed in detail. It is verified that the compound technique is a combination of laser etching, electrochemical etching and coupling etching, and laser etching is dominating in the compound process. Besides, both liquid-enhanced pressure and jet shock pressure can preferably improve the etching rate. At the same time, the anisotropic etching stop of silicon in alkaline solution is solved in this study. As a result, this process can be applied to transfer pattern without mask, and it possesses the ability of machining large aspect ratio micro structures.\",\"PeriodicalId\":364039,\"journal\":{\"name\":\"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2007.352243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2007.352243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了进一步了解激光诱导电化学蚀刻过程的行为,进行了激光诱导电化学蚀刻微加工硅的实验。本研究首次采用248nm准分子激光作为光源,功率为109W/cm2,采用KOH溶液作为电解液。根据实验结果,对表面图像和刻蚀速率进行了详细分析。验证了复合工艺是激光刻蚀、电化学刻蚀和耦合刻蚀的结合,激光刻蚀在复合工艺中占主导地位。此外,液体增强压力和射流冲击压力都能较好地提高刻蚀速率。同时,解决了硅在碱性溶液中的各向异性刻蚀停止问题。结果表明,该工艺可用于无掩模转移图案,并具有加工大纵横比微结构的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Excimer Laser Electrochemical Etching Silicon
To further understand the behavior of laser-induced electrochemical etching process, the experiments of micromachining silicon by laser-induced electrochemical etching were carried out. 248nm excimer laser as light source is adopted in this work with the power of 109W/cm2 for the first time and KOH solution is used as electrolyte. Based on the experiment results, the surface images and etching rate are analyzed in detail. It is verified that the compound technique is a combination of laser etching, electrochemical etching and coupling etching, and laser etching is dominating in the compound process. Besides, both liquid-enhanced pressure and jet shock pressure can preferably improve the etching rate. At the same time, the anisotropic etching stop of silicon in alkaline solution is solved in this study. As a result, this process can be applied to transfer pattern without mask, and it possesses the ability of machining large aspect ratio micro structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信