针对低功耗应用的32nm以下CMOS技术增强

R. Huang, P. W. Liu, E. C. Liu, W. Chiang, S. Tsai, J. Tsai, T. Shen, C. Tsai, C. Tsai, G. H. Ma
{"title":"针对低功耗应用的32nm以下CMOS技术增强","authors":"R. Huang, P. W. Liu, E. C. Liu, W. Chiang, S. Tsai, J. Tsai, T. Shen, C. Tsai, C. Tsai, G. H. Ma","doi":"10.1109/VTSA.2009.5159303","DOIUrl":null,"url":null,"abstract":"In this paper, we have systematically investigated the factors for performance enhancement on sub-32nm CMOS technology. We report that PMOS gains the drive current by slim spacer, S/D silicide resistance reduction by e-SiGe, and compressive CESL. The three factors improve the PMOS performance by 7%, 10% and 25% respectively. Combined with the three factors can gain the device drive current 30%. In addition, the optimized integration scheme can reduce NMOS extension resistance. The main cause is that post e-SiGe clean processes would loss the extension dopant and increases the extension resistance. We successfully reduce the NMOS total resistance 22% compared to control without compromise PMOS device performance.","PeriodicalId":309622,"journal":{"name":"2009 International Symposium on VLSI Technology, Systems, and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-32nm CMOS technology enhancement for low power applications\",\"authors\":\"R. Huang, P. W. Liu, E. C. Liu, W. Chiang, S. Tsai, J. Tsai, T. Shen, C. Tsai, C. Tsai, G. H. Ma\",\"doi\":\"10.1109/VTSA.2009.5159303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have systematically investigated the factors for performance enhancement on sub-32nm CMOS technology. We report that PMOS gains the drive current by slim spacer, S/D silicide resistance reduction by e-SiGe, and compressive CESL. The three factors improve the PMOS performance by 7%, 10% and 25% respectively. Combined with the three factors can gain the device drive current 30%. In addition, the optimized integration scheme can reduce NMOS extension resistance. The main cause is that post e-SiGe clean processes would loss the extension dopant and increases the extension resistance. We successfully reduce the NMOS total resistance 22% compared to control without compromise PMOS device performance.\",\"PeriodicalId\":309622,\"journal\":{\"name\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTSA.2009.5159303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on VLSI Technology, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTSA.2009.5159303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们系统地研究了sub-32nm CMOS技术性能提升的因素。我们报道了PMOS通过超薄间隔获得驱动电流,通过e-SiGe降低S/D硅化电阻,以及压缩CESL。这三个因素分别使PMOS的性能提高了7%、10%和25%。结合这三个因素可以获得器件驱动电流的30%。此外,优化后的集成方案可以降低NMOS的扩展阻力。其主要原因是e-SiGe后的清洁过程会使延伸掺杂剂丢失,从而增加延伸阻力。在不影响PMOS器件性能的情况下,我们成功地将NMOS总电阻降低了22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-32nm CMOS technology enhancement for low power applications
In this paper, we have systematically investigated the factors for performance enhancement on sub-32nm CMOS technology. We report that PMOS gains the drive current by slim spacer, S/D silicide resistance reduction by e-SiGe, and compressive CESL. The three factors improve the PMOS performance by 7%, 10% and 25% respectively. Combined with the three factors can gain the device drive current 30%. In addition, the optimized integration scheme can reduce NMOS extension resistance. The main cause is that post e-SiGe clean processes would loss the extension dopant and increases the extension resistance. We successfully reduce the NMOS total resistance 22% compared to control without compromise PMOS device performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信