{"title":"热稳定性高达1000 /spl度/C, TDDB可靠性高","authors":"Ohguro, Yoshitomi, Morimoto, Harakawa, Momose, Katsumata, Iwai","doi":"10.1109/VLSIT.1997.623715","DOIUrl":null,"url":null,"abstract":"INTRODUCTION CoSi2 salicide technology is going to be used for 0.25 pm CMOS not only for the high speed digital application, but also for RF analog application, because of its low sheet resistance of the gate electrode without no 'narrow line effect'. Low gate resistance less than 5 QiU is indispensable for realizinglow noisefigureofless than 1dB ofanalogMOSFET [I]. IJsuaUy, the highest heat process after the CoSi2 salidde process has been less than 800 \"C. However, from the view point of future merged process with RF analog, logic and memory devices, it has been some times requested to use even higher temperature process to anneal capacitor dielectrics or to activate impurities after the salicide process. Thus, it is important to know the thermal stability of the CoSi2 resistance and TDDB reliability of the gate oxide with higher process temperature, for the CoSi2 process to be used in wide range of applications.","PeriodicalId":414778,"journal":{"name":"1997 Symposium on VLSI Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"0.25 /spl mu/m salicide CMOS Technology Thermally Stable Up To 1,000/spl deg/C With High TDDB Reliability\",\"authors\":\"Ohguro, Yoshitomi, Morimoto, Harakawa, Momose, Katsumata, Iwai\",\"doi\":\"10.1109/VLSIT.1997.623715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION CoSi2 salicide technology is going to be used for 0.25 pm CMOS not only for the high speed digital application, but also for RF analog application, because of its low sheet resistance of the gate electrode without no 'narrow line effect'. Low gate resistance less than 5 QiU is indispensable for realizinglow noisefigureofless than 1dB ofanalogMOSFET [I]. IJsuaUy, the highest heat process after the CoSi2 salidde process has been less than 800 \\\"C. However, from the view point of future merged process with RF analog, logic and memory devices, it has been some times requested to use even higher temperature process to anneal capacitor dielectrics or to activate impurities after the salicide process. Thus, it is important to know the thermal stability of the CoSi2 resistance and TDDB reliability of the gate oxide with higher process temperature, for the CoSi2 process to be used in wide range of applications.\",\"PeriodicalId\":414778,\"journal\":{\"name\":\"1997 Symposium on VLSI Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.1997.623715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.1997.623715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
0.25 /spl mu/m salicide CMOS Technology Thermally Stable Up To 1,000/spl deg/C With High TDDB Reliability
INTRODUCTION CoSi2 salicide technology is going to be used for 0.25 pm CMOS not only for the high speed digital application, but also for RF analog application, because of its low sheet resistance of the gate electrode without no 'narrow line effect'. Low gate resistance less than 5 QiU is indispensable for realizinglow noisefigureofless than 1dB ofanalogMOSFET [I]. IJsuaUy, the highest heat process after the CoSi2 salidde process has been less than 800 "C. However, from the view point of future merged process with RF analog, logic and memory devices, it has been some times requested to use even higher temperature process to anneal capacitor dielectrics or to activate impurities after the salicide process. Thus, it is important to know the thermal stability of the CoSi2 resistance and TDDB reliability of the gate oxide with higher process temperature, for the CoSi2 process to be used in wide range of applications.