预测测试压缩水平的预测分析

O. Sinanoglu, S. Almukhaizim
{"title":"预测测试压缩水平的预测分析","authors":"O. Sinanoglu, S. Almukhaizim","doi":"10.1109/TEST.2010.5699228","DOIUrl":null,"url":null,"abstract":"Test data compression is widely employed in scan designs to tackle high test data volume and test time problems. Given the number of scan-in pins available in the ATE, architectural decisions regarding the number of internal scan chains directly impact the compression level attained. While targeting an aggressive compression level by increasing the number of internal scan chains would reduce the test data volume per encodable pattern, the cost of applying more patterns serially, to restore the coverage loss, offsets the compression benefits. Therefore, a predictive analysis is necessary to determine the best possible compression configuration, enabling the designers to make DfT architectural decisions early on in the design cycle to minimize test costs. In this paper, we propose a suite of predictive techniques geared towards projecting test cost for any given compression-based scan configuration. The appropriate technique is selected by designers based on which stage the design is in, the design abstraction and the amount of information available, the permissible computational complexity of the techniques, and the accuracy of the projected optimal compression ratio.","PeriodicalId":265156,"journal":{"name":"2010 IEEE International Test Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predictive analysis for projecting test compression levels\",\"authors\":\"O. Sinanoglu, S. Almukhaizim\",\"doi\":\"10.1109/TEST.2010.5699228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test data compression is widely employed in scan designs to tackle high test data volume and test time problems. Given the number of scan-in pins available in the ATE, architectural decisions regarding the number of internal scan chains directly impact the compression level attained. While targeting an aggressive compression level by increasing the number of internal scan chains would reduce the test data volume per encodable pattern, the cost of applying more patterns serially, to restore the coverage loss, offsets the compression benefits. Therefore, a predictive analysis is necessary to determine the best possible compression configuration, enabling the designers to make DfT architectural decisions early on in the design cycle to minimize test costs. In this paper, we propose a suite of predictive techniques geared towards projecting test cost for any given compression-based scan configuration. The appropriate technique is selected by designers based on which stage the design is in, the design abstraction and the amount of information available, the permissible computational complexity of the techniques, and the accuracy of the projected optimal compression ratio.\",\"PeriodicalId\":265156,\"journal\":{\"name\":\"2010 IEEE International Test Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2010.5699228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2010.5699228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

测试数据压缩被广泛应用于扫描设计中,以解决高测试数据量和测试时间的问题。考虑到ATE中可用的扫描引脚数量,关于内部扫描链数量的架构决策直接影响所获得的压缩级别。虽然通过增加内部扫描链的数量来达到积极的压缩水平将减少每个可编码模式的测试数据量,但连续应用更多模式以恢复覆盖损失的成本抵消了压缩的好处。因此,有必要进行预测分析,以确定最佳的压缩配置,使设计人员能够在设计周期的早期做出DfT体系结构决策,以最小化测试成本。在本文中,我们提出了一套预测技术,用于预测任何给定的基于压缩的扫描配置的测试成本。设计人员根据设计所处的阶段、设计抽象和可用信息的数量、技术允许的计算复杂性以及预测的最佳压缩比的准确性来选择适当的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive analysis for projecting test compression levels
Test data compression is widely employed in scan designs to tackle high test data volume and test time problems. Given the number of scan-in pins available in the ATE, architectural decisions regarding the number of internal scan chains directly impact the compression level attained. While targeting an aggressive compression level by increasing the number of internal scan chains would reduce the test data volume per encodable pattern, the cost of applying more patterns serially, to restore the coverage loss, offsets the compression benefits. Therefore, a predictive analysis is necessary to determine the best possible compression configuration, enabling the designers to make DfT architectural decisions early on in the design cycle to minimize test costs. In this paper, we propose a suite of predictive techniques geared towards projecting test cost for any given compression-based scan configuration. The appropriate technique is selected by designers based on which stage the design is in, the design abstraction and the amount of information available, the permissible computational complexity of the techniques, and the accuracy of the projected optimal compression ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信