使用分时TMR纠错的Goldschmidt分频器

W. Gallagher, E. Swartzlander
{"title":"使用分时TMR纠错的Goldschmidt分频器","authors":"W. Gallagher, E. Swartzlander","doi":"10.1109/DFTVS.1998.732170","DOIUrl":null,"url":null,"abstract":"Several implementations of division are based on the Goldschmidt, or series expansion, algorithm. It has a number of advantages, including quadratic convergence to the solution and two independent, and hence pipelinable, multiplies per iteration. Applying time shared triple modular redundancy (TSTMR) to such a divider allows the use of a smaller multiplier and requires triplicating the divider circuit. The smaller multiplier completes larger multiplications in several cycles using feedback registers. While this reduces the size of the fault tolerant divider over that of traditional TMR, there is a substantial penalty to latency. However, because early stages of the algorithm do not require high-precision multiplications, and rounding the quotient by computing the inverse function does not require a full-precision multiplication, the algorithm can be modified to reduce multiplication cycles. The resulting error-correcting dividers can be both faster and smaller than fault-tolerant dividers using traditional TMR.","PeriodicalId":245879,"journal":{"name":"Proceedings 1998 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (Cat. No.98EX223)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Error-correcting Goldschmidt dividers using time shared TMR\",\"authors\":\"W. Gallagher, E. Swartzlander\",\"doi\":\"10.1109/DFTVS.1998.732170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several implementations of division are based on the Goldschmidt, or series expansion, algorithm. It has a number of advantages, including quadratic convergence to the solution and two independent, and hence pipelinable, multiplies per iteration. Applying time shared triple modular redundancy (TSTMR) to such a divider allows the use of a smaller multiplier and requires triplicating the divider circuit. The smaller multiplier completes larger multiplications in several cycles using feedback registers. While this reduces the size of the fault tolerant divider over that of traditional TMR, there is a substantial penalty to latency. However, because early stages of the algorithm do not require high-precision multiplications, and rounding the quotient by computing the inverse function does not require a full-precision multiplication, the algorithm can be modified to reduce multiplication cycles. The resulting error-correcting dividers can be both faster and smaller than fault-tolerant dividers using traditional TMR.\",\"PeriodicalId\":245879,\"journal\":{\"name\":\"Proceedings 1998 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (Cat. No.98EX223)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1998 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (Cat. No.98EX223)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFTVS.1998.732170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (Cat. No.98EX223)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFTVS.1998.732170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

一些除法的实现是基于Goldschmidt,或级数展开算法。它有许多优点,包括二次收敛的解决方案和两个独立的,因此可管道,每次迭代的乘法。将时间共享三模冗余(TSTMR)应用于这样的分频器允许使用较小的乘法器,并且需要将分频电路复制三倍。较小的乘法器使用反馈寄存器在几个周期内完成较大的乘法。虽然这比传统的TMR减少了容错分配器的大小,但对延迟有很大的影响。然而,由于算法的早期阶段不需要高精度乘法,并且通过计算逆函数来舍入商不需要全精度乘法,因此可以修改算法以减少乘法周期。由此产生的纠错分频器可以比使用传统TMR的容错分频器更快、更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error-correcting Goldschmidt dividers using time shared TMR
Several implementations of division are based on the Goldschmidt, or series expansion, algorithm. It has a number of advantages, including quadratic convergence to the solution and two independent, and hence pipelinable, multiplies per iteration. Applying time shared triple modular redundancy (TSTMR) to such a divider allows the use of a smaller multiplier and requires triplicating the divider circuit. The smaller multiplier completes larger multiplications in several cycles using feedback registers. While this reduces the size of the fault tolerant divider over that of traditional TMR, there is a substantial penalty to latency. However, because early stages of the algorithm do not require high-precision multiplications, and rounding the quotient by computing the inverse function does not require a full-precision multiplication, the algorithm can be modified to reduce multiplication cycles. The resulting error-correcting dividers can be both faster and smaller than fault-tolerant dividers using traditional TMR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信