{"title":"使用弹出环的加速度不敏感半球形壳谐振器","authors":"M. M. Torunbalci, Sen Dai, A. Bhat, S. Bhave","doi":"10.1109/MEMSYS.2018.8346716","DOIUrl":null,"url":null,"abstract":"This work introduces DICE (Deep Isotropic Chemical Etching) process for fabrication of highly symmetric 3D Hemispherical Shell Resonators (HSR) based on HNA etching of <111> silicon using a pop-up ring mask. The proposed method is used to fabricate 650 nm thick SiO2 hemispherical shell with a diameter of 180 μm, demonstrating a 3D symmetry of 99%. The quality factor (Q) of the wine glass n=2 mode is measured as 31542 at 100 kHz with a frequency mismatch of 512 Hz (Δf/fr=0.5%) between the two n=2 degenerate modes. COMSOL simulations show that a symmetric shell resonator has simultaneous shock insensitivity to in-plane and out-of-plane acceleration.","PeriodicalId":400754,"journal":{"name":"2018 IEEE Micro Electro Mechanical Systems (MEMS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Acceleration insensitive hemispherical shell resonators using pop-up rings\",\"authors\":\"M. M. Torunbalci, Sen Dai, A. Bhat, S. Bhave\",\"doi\":\"10.1109/MEMSYS.2018.8346716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces DICE (Deep Isotropic Chemical Etching) process for fabrication of highly symmetric 3D Hemispherical Shell Resonators (HSR) based on HNA etching of <111> silicon using a pop-up ring mask. The proposed method is used to fabricate 650 nm thick SiO2 hemispherical shell with a diameter of 180 μm, demonstrating a 3D symmetry of 99%. The quality factor (Q) of the wine glass n=2 mode is measured as 31542 at 100 kHz with a frequency mismatch of 512 Hz (Δf/fr=0.5%) between the two n=2 degenerate modes. COMSOL simulations show that a symmetric shell resonator has simultaneous shock insensitivity to in-plane and out-of-plane acceleration.\",\"PeriodicalId\":400754,\"journal\":{\"name\":\"2018 IEEE Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2018.8346716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2018.8346716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
摘要
本研究介绍了基于硅的海航蚀刻工艺,利用弹出式环形掩模制造高度对称的三维半球壳谐振器(HSR)的DICE (Deep Isotropic Chemical Etching)工艺。利用该方法制备了厚度为650 nm、直径为180 μm的SiO2半球形壳,其三维对称性达到99%。葡萄酒杯n=2模态的质量因子(Q)在100 kHz时测量为31542,两个n=2简并模态之间的频率失配为512 Hz (Δf/fr=0.5%)。COMSOL仿真结果表明,对称壳腔对面内和面外加速度同时具有冲击不敏感性。
Acceleration insensitive hemispherical shell resonators using pop-up rings
This work introduces DICE (Deep Isotropic Chemical Etching) process for fabrication of highly symmetric 3D Hemispherical Shell Resonators (HSR) based on HNA etching of <111> silicon using a pop-up ring mask. The proposed method is used to fabricate 650 nm thick SiO2 hemispherical shell with a diameter of 180 μm, demonstrating a 3D symmetry of 99%. The quality factor (Q) of the wine glass n=2 mode is measured as 31542 at 100 kHz with a frequency mismatch of 512 Hz (Δf/fr=0.5%) between the two n=2 degenerate modes. COMSOL simulations show that a symmetric shell resonator has simultaneous shock insensitivity to in-plane and out-of-plane acceleration.