利用光子晶体表面的光学共振增强dna微阵列检测极限

P. Mathias, S. Jones, D. Gonzalez, L. Vodkin, B. Cunningham
{"title":"利用光子晶体表面的光学共振增强dna微阵列检测极限","authors":"P. Mathias, S. Jones, D. Gonzalez, L. Vodkin, B. Cunningham","doi":"10.1109/SENSOR.2009.5285438","DOIUrl":null,"url":null,"abstract":"DNA microarrays are typically composed of micron-scale spots of specific genetic sequences attached to a glass microscope slide for the purpose of gene expression analysis. By replacing the glass microarray substrate with a photonic crystal surface, fluorescence enhancement effects can be utilized to improve the performance of the microarray. This work describes the design of photonic crystal surfaces by Rigorous Coupled-Wave Analysis to align guided-mode resonances with Cyanine-5 excitation and emission wavelengths at approximately 633 nm and 680 nm, respectively. The resonances from photonic crystals fabricated by nanoreplica molding are characterized by optical transmission measurements, and 20x enhancement from the fluorophore Cyanine-5 is demonstrated relative to a glass slide. Finally, a DNA microarray experiment probing the expression of genes in Glycine max (soybean) is performed, demonstrating the photonic crystal microarray detects 20% more genes from the sample than are detected by the glass microarray.","PeriodicalId":247826,"journal":{"name":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing dna microarray detection limits using optical resonances from photonic crystal surfaces\",\"authors\":\"P. Mathias, S. Jones, D. Gonzalez, L. Vodkin, B. Cunningham\",\"doi\":\"10.1109/SENSOR.2009.5285438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA microarrays are typically composed of micron-scale spots of specific genetic sequences attached to a glass microscope slide for the purpose of gene expression analysis. By replacing the glass microarray substrate with a photonic crystal surface, fluorescence enhancement effects can be utilized to improve the performance of the microarray. This work describes the design of photonic crystal surfaces by Rigorous Coupled-Wave Analysis to align guided-mode resonances with Cyanine-5 excitation and emission wavelengths at approximately 633 nm and 680 nm, respectively. The resonances from photonic crystals fabricated by nanoreplica molding are characterized by optical transmission measurements, and 20x enhancement from the fluorophore Cyanine-5 is demonstrated relative to a glass slide. Finally, a DNA microarray experiment probing the expression of genes in Glycine max (soybean) is performed, demonstrating the photonic crystal microarray detects 20% more genes from the sample than are detected by the glass microarray.\",\"PeriodicalId\":247826,\"journal\":{\"name\":\"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2009.5285438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2009.5285438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DNA微阵列通常由附着在玻璃显微镜载玻片上的特定基因序列的微米级斑点组成,用于基因表达分析。用光子晶体表面代替玻璃微阵列衬底,可以利用荧光增强效应来提高微阵列的性能。这项工作描述了通过严格耦合波分析设计光子晶体表面,以对准引导模式共振与花青素-5的激发波长和发射波长分别约为633 nm和680 nm。通过光学传输测量表征了由纳米复制模压制成的光子晶体的共振,并证明了相对于玻璃载玻片的荧光团菁5的20倍增强。最后,进行了DNA微阵列实验,探测大豆中基因的表达,结果表明光子晶体微阵列从样品中检测到的基因比玻璃微阵列多20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing dna microarray detection limits using optical resonances from photonic crystal surfaces
DNA microarrays are typically composed of micron-scale spots of specific genetic sequences attached to a glass microscope slide for the purpose of gene expression analysis. By replacing the glass microarray substrate with a photonic crystal surface, fluorescence enhancement effects can be utilized to improve the performance of the microarray. This work describes the design of photonic crystal surfaces by Rigorous Coupled-Wave Analysis to align guided-mode resonances with Cyanine-5 excitation and emission wavelengths at approximately 633 nm and 680 nm, respectively. The resonances from photonic crystals fabricated by nanoreplica molding are characterized by optical transmission measurements, and 20x enhancement from the fluorophore Cyanine-5 is demonstrated relative to a glass slide. Finally, a DNA microarray experiment probing the expression of genes in Glycine max (soybean) is performed, demonstrating the photonic crystal microarray detects 20% more genes from the sample than are detected by the glass microarray.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信