{"title":"基于细观力学的非均质下填料电子封装组件界面应力分析与断裂","authors":"Ji Eun Park, I. Jasiuk, A. Zubelewicz","doi":"10.1109/ISAOM.2001.916582","DOIUrl":null,"url":null,"abstract":"The flip-chip assembly, which is composed of three main components, i.e. chip with C4 interconnects, underfill and substrate, undergoes thermal loading during the curing process and its operational life. This analysis is focused on delamination of the underfill from the passivation layer of a chip due to thermal loading by using a simple model involving a finite bi-material strip. The underfill is modeled as a composite material consisting of the polymer matrix and silica particles. The interfacial stresses are determined here for several particle arrangements, while the interfacial fracture is studied using a J-integral method. The interfacial stress analysis and the J-integral method give the same trends.","PeriodicalId":321904,"journal":{"name":"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Micromechanics-based interfacial stress analysis and fracture in electronic packaging assemblies with heterogeneous underfill\",\"authors\":\"Ji Eun Park, I. Jasiuk, A. Zubelewicz\",\"doi\":\"10.1109/ISAOM.2001.916582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flip-chip assembly, which is composed of three main components, i.e. chip with C4 interconnects, underfill and substrate, undergoes thermal loading during the curing process and its operational life. This analysis is focused on delamination of the underfill from the passivation layer of a chip due to thermal loading by using a simple model involving a finite bi-material strip. The underfill is modeled as a composite material consisting of the polymer matrix and silica particles. The interfacial stresses are determined here for several particle arrangements, while the interfacial fracture is studied using a J-integral method. The interfacial stress analysis and the J-integral method give the same trends.\",\"PeriodicalId\":321904,\"journal\":{\"name\":\"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAOM.2001.916582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAOM.2001.916582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Micromechanics-based interfacial stress analysis and fracture in electronic packaging assemblies with heterogeneous underfill
The flip-chip assembly, which is composed of three main components, i.e. chip with C4 interconnects, underfill and substrate, undergoes thermal loading during the curing process and its operational life. This analysis is focused on delamination of the underfill from the passivation layer of a chip due to thermal loading by using a simple model involving a finite bi-material strip. The underfill is modeled as a composite material consisting of the polymer matrix and silica particles. The interfacial stresses are determined here for several particle arrangements, while the interfacial fracture is studied using a J-integral method. The interfacial stress analysis and the J-integral method give the same trends.