基于DTCO仿真框架的全模拟ReRAM神经形态电路优化

A. Nguyen, Hoi Nguyen, Sruthi Venimadhavan, A. Venkattraman, D. Parent, H. Wong
{"title":"基于DTCO仿真框架的全模拟ReRAM神经形态电路优化","authors":"A. Nguyen, Hoi Nguyen, Sruthi Venimadhavan, A. Venkattraman, D. Parent, H. Wong","doi":"10.23919/SISPAD49475.2020.9241635","DOIUrl":null,"url":null,"abstract":"Neuromorphic inference circuits using emerging devices (e.g. ReRAM) are very promising for ultra-low power edge computing such as in Internet-of-Thing. While ReRAM synapse is used as an analog device for matrix-vector-multiplications, the neuron activation unit (e.g. ReLU) is generally digital. To further minimize its power and area consumption, fully analog neuromorphic circuits are needed. This requires Design-Technology Co-Optimization (DTCO). In this paper, we use our Software+DTCO framework for fully analog neuromorphic inference circuit optimization using ReRAM as an example. The interaction between software machine learning, ReRAM, current comparator, and ReLU are studied. It is found that the neuromorphic circuit is very robust to the variation of ReLU, which confirms the importance of DTCO simulation.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fully Analog ReRAM Neuromorphic Circuit Optimization using DTCO Simulation Framework\",\"authors\":\"A. Nguyen, Hoi Nguyen, Sruthi Venimadhavan, A. Venkattraman, D. Parent, H. Wong\",\"doi\":\"10.23919/SISPAD49475.2020.9241635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic inference circuits using emerging devices (e.g. ReRAM) are very promising for ultra-low power edge computing such as in Internet-of-Thing. While ReRAM synapse is used as an analog device for matrix-vector-multiplications, the neuron activation unit (e.g. ReLU) is generally digital. To further minimize its power and area consumption, fully analog neuromorphic circuits are needed. This requires Design-Technology Co-Optimization (DTCO). In this paper, we use our Software+DTCO framework for fully analog neuromorphic inference circuit optimization using ReRAM as an example. The interaction between software machine learning, ReRAM, current comparator, and ReLU are studied. It is found that the neuromorphic circuit is very robust to the variation of ReLU, which confirms the importance of DTCO simulation.\",\"PeriodicalId\":206964,\"journal\":{\"name\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SISPAD49475.2020.9241635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

使用新兴设备(例如ReRAM)的神经形态推理电路在物联网等超低功耗边缘计算中非常有前途。虽然ReRAM突触被用作矩阵-矢量乘法的模拟设备,但神经元激活单元(例如ReLU)通常是数字的。为了进一步减少其功率和面积消耗,需要完全模拟的神经形态电路。这需要设计-技术协同优化(DTCO)。在本文中,我们使用我们的Software+DTCO框架进行全模拟神经形态推理电路优化,并以ReRAM为例。研究了软件机器学习、ReRAM、电流比较器和ReLU之间的相互作用。发现神经形态电路对ReLU的变化具有很强的鲁棒性,这证实了DTCO仿真的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully Analog ReRAM Neuromorphic Circuit Optimization using DTCO Simulation Framework
Neuromorphic inference circuits using emerging devices (e.g. ReRAM) are very promising for ultra-low power edge computing such as in Internet-of-Thing. While ReRAM synapse is used as an analog device for matrix-vector-multiplications, the neuron activation unit (e.g. ReLU) is generally digital. To further minimize its power and area consumption, fully analog neuromorphic circuits are needed. This requires Design-Technology Co-Optimization (DTCO). In this paper, we use our Software+DTCO framework for fully analog neuromorphic inference circuit optimization using ReRAM as an example. The interaction between software machine learning, ReRAM, current comparator, and ReLU are studied. It is found that the neuromorphic circuit is very robust to the variation of ReLU, which confirms the importance of DTCO simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信