二叉覆盖问题的启发式方法

M. Servít, J. Zamazal
{"title":"二叉覆盖问题的启发式方法","authors":"M. Servít, J. Zamazal","doi":"10.1109/EDAC.1992.205906","DOIUrl":null,"url":null,"abstract":"Covering problem is a problem of extraction of a minimum cost subset from a given set that satisfies certain constraints expressed as a Boolean formula in conjunctive normal form. This problem is NP-hard, heuristic methods are thus of interest. The authors present two heuristic methods to finding a nearly minimal solution and compare them to each other. The authors derive the asymptotic complexity of the presented methods and report some computational results obtained for a number of randomly generated covering problems.<<ETX>>","PeriodicalId":285019,"journal":{"name":"[1992] Proceedings The European Conference on Design Automation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Heuristic approach to binate covering problem\",\"authors\":\"M. Servít, J. Zamazal\",\"doi\":\"10.1109/EDAC.1992.205906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covering problem is a problem of extraction of a minimum cost subset from a given set that satisfies certain constraints expressed as a Boolean formula in conjunctive normal form. This problem is NP-hard, heuristic methods are thus of interest. The authors present two heuristic methods to finding a nearly minimal solution and compare them to each other. The authors derive the asymptotic complexity of the presented methods and report some computational results obtained for a number of randomly generated covering problems.<<ETX>>\",\"PeriodicalId\":285019,\"journal\":{\"name\":\"[1992] Proceedings The European Conference on Design Automation\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings The European Conference on Design Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAC.1992.205906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings The European Conference on Design Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAC.1992.205906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

覆盖问题是从给定的集合中提取最小代价子集的问题,该子集满足一定的约束,并以合取范式的布尔公式表示。这个问题是np困难的,因此启发式方法很有趣。作者提出了两种启发式方法来寻找接近最小解,并对它们进行了比较。作者推导了所提方法的渐近复杂度,并报告了一些随机生成的覆盖问题的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristic approach to binate covering problem
Covering problem is a problem of extraction of a minimum cost subset from a given set that satisfies certain constraints expressed as a Boolean formula in conjunctive normal form. This problem is NP-hard, heuristic methods are thus of interest. The authors present two heuristic methods to finding a nearly minimal solution and compare them to each other. The authors derive the asymptotic complexity of the presented methods and report some computational results obtained for a number of randomly generated covering problems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信