非清洁装配工艺条件-对倒装芯片/底填可靠性的影响

M. Todd, K. Costello
{"title":"非清洁装配工艺条件-对倒装芯片/底填可靠性的影响","authors":"M. Todd, K. Costello","doi":"10.1109/ISAOM.2001.916546","DOIUrl":null,"url":null,"abstract":"No-clean flux chemistries are gaining acceptance in many high volume SMT manufacturing processes worldwide. These materials offer advantages in manufacturing efficiencies by reducing overall manufacturing cycle time and reducing in-process inventories. The use of no-clean flux materials also eliminates potential environmentally dangerous cleaning solvents from the manufacturing environment (McCurdie, 2000). Dozens of no-clean flux formulations are now available from leading manufacturers based on both natural and synthetic chemistries. The impact of these materials, however, on product reliability must be assessed prior to acceptance. No-clean flux residues have been shown to affect, for example, the physical properties of epoxy underfill materials (Bacher and Kirkpatrick, 1999) as well as the long-term reliability characteristics of flip-chip assemblies (Todd, 2000). A series of experiments was conducted to identify the effects of key manufacturing process variable changes on the performance of flip chip underfill materials in a no-clean flux flip-chip assembly. The manufacturing process variables evaluated were: no-clean flux chemistry type; reflow profile; underfill dispense temperature.","PeriodicalId":321904,"journal":{"name":"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"No-clean assembly process conditions-effects on flip-chip/underfill reliability\",\"authors\":\"M. Todd, K. Costello\",\"doi\":\"10.1109/ISAOM.2001.916546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"No-clean flux chemistries are gaining acceptance in many high volume SMT manufacturing processes worldwide. These materials offer advantages in manufacturing efficiencies by reducing overall manufacturing cycle time and reducing in-process inventories. The use of no-clean flux materials also eliminates potential environmentally dangerous cleaning solvents from the manufacturing environment (McCurdie, 2000). Dozens of no-clean flux formulations are now available from leading manufacturers based on both natural and synthetic chemistries. The impact of these materials, however, on product reliability must be assessed prior to acceptance. No-clean flux residues have been shown to affect, for example, the physical properties of epoxy underfill materials (Bacher and Kirkpatrick, 1999) as well as the long-term reliability characteristics of flip-chip assemblies (Todd, 2000). A series of experiments was conducted to identify the effects of key manufacturing process variable changes on the performance of flip chip underfill materials in a no-clean flux flip-chip assembly. The manufacturing process variables evaluated were: no-clean flux chemistry type; reflow profile; underfill dispense temperature.\",\"PeriodicalId\":321904,\"journal\":{\"name\":\"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAOM.2001.916546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAOM.2001.916546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在世界范围内许多大批量的SMT制造过程中,不清洁的焊剂化学正在获得认可。这些材料通过减少整体制造周期时间和减少过程中库存,在制造效率方面具有优势。使用不清洁的助焊剂材料也从制造环境中消除了潜在的对环境有害的清洁溶剂(McCurdie, 2000)。数十种不清洁的助焊剂配方现在可从领先的制造商基于天然和合成化学物质。然而,这些材料对产品可靠性的影响必须在接受之前进行评估。未清洁的焊剂残留物已被证明会影响环氧底料的物理特性(Bacher和Kirkpatrick, 1999)以及倒装芯片组件的长期可靠性特性(Todd, 2000)。通过一系列实验研究了在非清洁磁通倒装芯片组装中,关键工艺变量的变化对倒装芯片底填材料性能的影响。评价的制造工艺变量为:无清洁助熔剂化学类型;炉温;下填料分配温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No-clean assembly process conditions-effects on flip-chip/underfill reliability
No-clean flux chemistries are gaining acceptance in many high volume SMT manufacturing processes worldwide. These materials offer advantages in manufacturing efficiencies by reducing overall manufacturing cycle time and reducing in-process inventories. The use of no-clean flux materials also eliminates potential environmentally dangerous cleaning solvents from the manufacturing environment (McCurdie, 2000). Dozens of no-clean flux formulations are now available from leading manufacturers based on both natural and synthetic chemistries. The impact of these materials, however, on product reliability must be assessed prior to acceptance. No-clean flux residues have been shown to affect, for example, the physical properties of epoxy underfill materials (Bacher and Kirkpatrick, 1999) as well as the long-term reliability characteristics of flip-chip assemblies (Todd, 2000). A series of experiments was conducted to identify the effects of key manufacturing process variable changes on the performance of flip chip underfill materials in a no-clean flux flip-chip assembly. The manufacturing process variables evaluated were: no-clean flux chemistry type; reflow profile; underfill dispense temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信