具有非高斯频率波动的谐振子

A. Dubkov
{"title":"具有非高斯频率波动的谐振子","authors":"A. Dubkov","doi":"10.1109/ICNF.2011.5994369","DOIUrl":null,"url":null,"abstract":"The moment and probability characteristics of harmonic oscillator with white non-Gaussian frequency fluctuations are investigated. Using a functional approach we derive the integro-differential Kolmogorov equation for the joint probability density function of oscillator coordinate and velocity. Since it is difficult to find a solution of this equation in the steady state the set of equations for joint moments and the hypothesis of time-reversal symmetry which is valid for zero friction are applied. For the case of small friction we obtain the approximate probability distributions of oscillator coordinate and velocity which transform into exact stable Cauchy distributions in the limit of zero friction.","PeriodicalId":137085,"journal":{"name":"2011 21st International Conference on Noise and Fluctuations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic oscillator with non-Gaussian frequency fluctuations\",\"authors\":\"A. Dubkov\",\"doi\":\"10.1109/ICNF.2011.5994369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The moment and probability characteristics of harmonic oscillator with white non-Gaussian frequency fluctuations are investigated. Using a functional approach we derive the integro-differential Kolmogorov equation for the joint probability density function of oscillator coordinate and velocity. Since it is difficult to find a solution of this equation in the steady state the set of equations for joint moments and the hypothesis of time-reversal symmetry which is valid for zero friction are applied. For the case of small friction we obtain the approximate probability distributions of oscillator coordinate and velocity which transform into exact stable Cauchy distributions in the limit of zero friction.\",\"PeriodicalId\":137085,\"journal\":{\"name\":\"2011 21st International Conference on Noise and Fluctuations\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 21st International Conference on Noise and Fluctuations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNF.2011.5994369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 21st International Conference on Noise and Fluctuations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNF.2011.5994369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有白色非高斯频率波动的谐振子的矩量和概率特性。利用泛函方法导出了振子坐标和速度的联合概率密度函数的积分微分Kolmogorov方程。由于该方程在稳态下难以求出解,本文采用了一组关节力矩方程和零摩擦时有效的时间反转对称假设。在小摩擦情况下,得到了振子坐标和速度的近似概率分布,并在零摩擦极限下转化为精确稳定的柯西分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic oscillator with non-Gaussian frequency fluctuations
The moment and probability characteristics of harmonic oscillator with white non-Gaussian frequency fluctuations are investigated. Using a functional approach we derive the integro-differential Kolmogorov equation for the joint probability density function of oscillator coordinate and velocity. Since it is difficult to find a solution of this equation in the steady state the set of equations for joint moments and the hypothesis of time-reversal symmetry which is valid for zero friction are applied. For the case of small friction we obtain the approximate probability distributions of oscillator coordinate and velocity which transform into exact stable Cauchy distributions in the limit of zero friction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信